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In this notes, we present the most popular finite difference method, MAC [2], for the
Stokes equations. We consider the steady-state Stokes equations

(1)
{−∆u +∇p = f in Ω,

−∇ · u = g in Ω.

Here for the sake of simplicity, we fix the viscosity constant µ = 1 and consider a two
dimensional rectangular domain. Various boundary conditions will be provided during the
discussion.

1. MAC SCHEME

Let u = (u, v) and f = (f1, f2). We rewrite the Stokes equations coordinate-wise

−∆u+ ∂xp = f1,(2)
−∆v + ∂yp = f2,(3)
−∂xu− ∂yv = g.(4)

The domain Ω = (0, 1)2 is decomposed into small squares with size h. We use two di-
mensional uniform grids for Ω = (0, 1)2 as a typical setting. Generalization to domains
composed by rectangles and to three dimensional domains composed by cubes is straight-
forward but with extra notation.

Standard central difference discretization of ∆ and ∂x, ∂y at vertices of the uniform grid
will not give a stable discretization of Stokes equations due to the failure of the discrete
inf-sup condition. To see this, one can view the 5-point stencil as using P1 element for
Laplacian operator and thus discretization at vertices is equivalent to use P1−P1 unstable
pair. Similarly changing pressure discretization to centers of cells corresponds to P1 −P0

which is still not stable. See Finite Element Methods for Stokes equation for discussion on
the discrete inf-sup condition.
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The idea of MAC, Marker and Cell, is to place the unknown of (u, v, p) in different loca-
tions. Specifically the pressure p is located in the center of each cell and the x-component
velocity u on the middle points of vertical edges (red dots) and the y-component velocity
v on middle points of horizontal edges; see Figure 1.

SOLVING STOKES EQUATION WITH MAC METHOD

ABSTRACT. In this notes, we summarize numerical methods for solving Stokes equations
on rectangular grid, and solve it by multigrid vcycle method with distributive Gauss-Seidel
relaxation as smoothing. The numerical methods we concerned are MAC scheme, noncon-
forming rotate bilinear FEM and nonconforming rotate bilinear FVM.

1. PROBLEM STATEMENT

We consider Stokes equation

(1.1)

8
><
>:

�µ�~u +rp =~f in ⌦,

r · ~u =0 in ⌦.

~u =0 on @⌦

where ~u = (u, v)t, and ~f = (f1, f2)
t.

2. MAC DISCRETIZATION
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FIGURE 1. Index for p, u, v.

2.1. MAC Scheme. Suppose we have a rectangular decomposition, for each cell, the de-
gree of freedoms for u and v are located on the vertical edge centers and horizontal edge
centers, respectively, and the degree of freedoms for pressure p are located at cell centers.
The MAC scheme is written as (µ = 1)

4ui,j � ui�1,j � ui+1,j � ui,j�1 � ui,j+1

h2
+

pi,j � pi,j�1

h
= f i,j

1(2.1)

4vi,j � vi�1,j � vi+1,j � vi,j�1 � vi,j+1

h2
+

pi�1,j � pi,j

h
= f i,j

2(2.2)

ui,j+1 � ui,j

h
+

vi,j � vi+1,j

h
= 0(2.3)

It’s easy to see that the above scheme has second order truncation error.
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(c) v

FIGURE 1. Location and indices of (u, v, p) variables.

The MAC scheme is to discretize the x-coordinate momentum equation (2) at vertical
edges, the y-coordinate momentum equation (3) at horizontal edges, and the continuity
equation (4) at cell centers using central difference schemes.

Let us introduce the indices system consistent to the matrix, which is easier for the
programming: i is the row index and j is the column index, running from 1 : n or 1 : n+1,
where n the number of cells in one direction. The pressure is then represented by a matrix
p(1:n,1:n), and the velocity is u(1:n,1:n+1), and v(1:n+1,1:n). One can easily
write out the mapping from the index (i, j) to the coordinate (xj , yi) for different variables.
Note that it is not consistent with the traditional indices system where i for xi and j for
yj . The advtange to use the proposed index system is that once the mapping (algebraic to
geometry mapping) is fixed, in almost all places of coding, we operate on the matrix and
such index system is more intuitive to traverse in the matrix. See Programming of Finite
Difference Methods for detailed discussion.2 SOLVING STOKES EQUATION WITH MAC METHOD
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FIGURE 2. equation for u, v, p.

2.2. Dirichlet boundary condition.
(1) Square domain

Consider a unit square domain with the grid spacing h for each direction. We
only consider the handling of boundary condition for u on the level y = h

2 . The
same approach can be applied for the level y = 1� h

2 . The handling of v on x = h
2

and x = 1� h
2 is similar.

Our aim is how to approximate uyy(jh, h
2 ) with the numerial grid function

values uN�1,j , uN,j , uy=0,j ?
(a) The Natural Taylor Series Expansion Method.

Consider the following Taylor series expansions:

u(jh, 0) = u(jh,
h

2
)� uy(jh,

h

2
)
h

2
+

1

2
uyy(jh,

h

2
)
h2

4
+ O(h2),(2.4)

u(jh,
3h

2
) = u(jh,

h

2
)� uy(jh,

h

2
)h +

1

2
uyy(jh,

h

2
)h2 + O(h2).(2.5)

Multiplying (2.4) by 2 and taking summation with (2.5) yields

�uyy(jh,
h

2
) =

4

3
(
2uy=0,j � 3uN,j + uN�1,j

h2
) + O(h2).(2.6)

Thus the scheme for the Laplacian term of u at y = h
2 is

�4

3
· 2uy=0,j � 3uN,j + uN�1,j

h2
� uN,j�1 � 2uN,j + uN,j+1

h2
+

pN,j � pN,j�1

h
= fN,j

1 .

(b) Augmented Variable Method.
We use augmented variables @nu = g1 at the sides y = 0 with 0  x  1.
Then at y = h

2 , we have

uyy(jh,
h

2
) =

uy(jh, h)� uy(jh, 0)

h
+ O(h2) =

uN�1,j�uN,j

h � gj,0
1

h
+ O(h2).

The first order Taylor series approximation of u at y = 0 results in

uN,j + gy=0,j
1

h

2
� uy=0,j = 0.

FIGURE 2. Indices of local stencils of MAC equations
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Using this index system, the MAC scheme can be written as

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
+
pi,j − pi,j−1

h
= f i,j1(5)

4vi,j − vi−1,j − vi+1,j − vi,j−1 − vi,j+1

h2
+
pi−1,j − pi,j

h
= f i,j2(6)

−u
i,j+1 − ui,j

h
− vi,j − vi+1,j

h
= gi,j(7)

Since central difference schemes are used, it is easy to see that the above scheme has
second order truncation error at interior nodes.

We then discuss discretization of boundary conditions. For Dirichlet boundary condi-
tion, one can impose it in one direction by fixing the value laying on the boundary and by
extrapolation on the other direction. Let us take x-coordinate component velocity u as an
example. On edges x = 0 and x = 1, the value is given by the boundary condition and no
equation is discretized on these points. On edges y = 0 and y = 1, however, there is no
unknowns of u on that edge and we need to modify the stencil at y = h/2, 1 − h/2. As
an example, consider the discretization at the index (1, j). We introduce the ghost value
at y = 1 + h/2, i.e. u(0, j). Then we can discretize the momentum equation at (1, j)
using (5). The ghost value can be eliminated by the linear extrapolation, i.e, requiring
(u0,j + u1,j)/2 = uD(xj , 1). Therefore the modified discretization (5) is

5u1,j − u2,j − u1,j−1 − u1,j+1

h2
+
p1,j − p1,j−1

h
= f1,j

1 +
2uD(xj , 1)

h2
.

In short

(8) (5,−1,−1,−1,−2)

is the stencil for u-unknowns near the horizontal boundaries.
We can also use the quadratic extrapolation, i.e., use u1/2,j , u1,j , u2,j to fit a quadratic

function and evaluate at u0,j to get u0,j = −2u1,j + 1
3u

2,j + 8
3u

1/2,j . The modified
boundary scheme is:

6u1,j − 4
3u

2,j − u1,j−1 − u1,j+1

h2
+
p1,j − p1,j−1

h
= f1,j

1 +
8
3uD(xj , 1)

h2
.

and this near boundary stencil is denoted by

(9) (6,−4

3
,−1,−1,−8

3
).

The quadratic extrapolation will lead to a better accuracy. It will, however, destroy the
symmetry of the matrix since the coefficient connecting u1,j to u2,j is −4/3 not −1.

For Neumann boundary condition ∂u/∂n|∂Ω = gN , the ghost value will be eliminated
by the central difference discretization (u0,j − u1,j)/h = gN (xj , 1) and the modified
stencil is

3u1,j − u1,j−1 − u1,j+1 − u2,j

h2
+
p1,j − p1,j−1

h
= f1,j

1 +
gN (xj , 1)

h
.

Unlike the Dirichlet boundary condition, similar modification is needed for all grids points
on or near the boundary edges and for points near corners two ghost degree of freedom
(dof) should be introduced; see Finite Difference Methods.

We can write the discrete problem in the matrix form with familiar notation:
(
A Bᵀ

B 0

)(
uh

ph

)
=

(
fh

gh

)
,(10)

http://www.math.uci.edu/~chenlong/226/FDM.pdf
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where A = −∆, B = −div, and Bᵀ = grad . But there is no need to form these matri-
ces explicitly when implement the MAC scheme. See the matrix-free implementation in
Programming of Finite Difference Methods.

Exercise 1.1. Verify the matrix BBᵀ is the standard 5-point stencil of Laplacian operator
discretized at cell centers and with Neumann boundary conditions. Therefore the pressure
is unique up to a constant.

2. MULTIGRID METHODS FOR MAC SCHEME

In this section we present a multigrid method for solving the MAC discretization of
Stokes equations (10). We describe the so-called Distributive Gauss-Seidel (DGS) smoother
developed by Brandt and Dinar [1] and prolongation and restriction operators and refer to
Programming of MultiGrid Methods for the implementation of the multigrid cycles.

2.1. Distributive Gauss-Seidel Relaxation. The standard relaxations, e.g., the Gauss-
Seidel relaxation, are not applicable to the system (1), since the matrix is not diagonally
dominant, and especially the zero block in the diagonal hampers the relaxation of the pres-
sure. The idea of the distributive relaxation is to transform the principle operators to the
main diagonal and apply the equation-wise decoupled relaxation.

Denote by

L =

(
A Bᵀ

B 0

)
, and M =

(
I Bᵀ

0 −BBᵀ

)

then

LM =

(
A ABᵀ −BᵀBBᵀ

B BBᵀ

)
≈
(
A 0
B BBᵀ

)
:= L̃M.

By “ ≈ ” here we mean that the commutator E = ABᵀ − BᵀBBᵀ is small or is of low
rank. Thus it can be omitted when designing relaxation methods.

Let us justify that the commutator E is kind of ‘small’. In the continuous level, with
certain assumptions on the smoothness and boundary conditions, the (1, 2) block of LM
can be manipulate as

(−∆ + grad div)grad = curl curl grad = 0.

Here we use the identity

(11) −∆ = −grad div +curl curl ,

which holds in H−1 topology, and the fact

(12) curl grad = 0.

In short it can be summarized as

(13) ∆ugradp = gradu∆p.

Here we use subscript to indicate operators associated to velocity and pressure. Unfortu-
nately (13) does not hold exactly for Stokes equations due to the boundary condition of
velocity.

Exercise 2.1. Verify for MAC scheme, E(i, j) = 0 for interior indices 1 < i, j < n. Thus
the rank of E is at most n2 − (n− 1)2.

http://www.math.uci.edu/~chenlong/226/FDMcode.pdf
http://www.math.uci.edu/~chenlong/226/MGcode.pdf
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Nevertheless, the matrixM(L̃M)−1 will be an good approximation ofL−1 =M(LM)−1.
It defines an iterative method for the original system

xk+1 = xk +M(L̃M)−1(b− Lxk),(14)

where to simply the notation denoted by xk := (uk, pk), b := (f, g).
The so-called DGS smoother introduced by Brandt and Dinar [1] comes from consecu-

tively Gauss-Seidel relaxation applied to the operator L̃M. That is solving the transformed
residual equation (

A 0
B Ap

)(
eu
ep

)
=

(
ru
rp

)

approximately and update it through the distributive matrixM. Let Â, Âp be approxima-
tion of A and Ap = BBᵀ, respectively.

Algorithm (DGS) [uk+1, pk+1]← DGS(uk, pk, f, g)

(1) Relax the momentum equation

uk+ 1
2 = uk + Â−1(f −Auk −Bᵀpk),

(2) Relax the transformed mass equation

ep = Â−1
p (g −Buk+ 1

2 ).

(3) Distribute the correction to the original variables

uk+1 = uk+ 1
2 +Bᵀep,

pk+1 = pk −Apep.

The update formulae of pressure can be also interpret as a Uzawa method using ApÂ
−1
p

as an approximation for the inverse of the Schur complement. From this point of view, the
step (3) can be merged as pk+1 = pk +Buk+1/2 − g.

The name “distributive relaxation” is due to the fact that the correction ep is distributed
over u and p through the distributive matrixM.

Remark 2.2. As the pressure is unique up to a constant, it is recommended to normalize
pk+1 after the update. On the uniform grid, p = p - mean(p) will ensure

∫
Ω
p dx = 0.

For non-uniform grids, weighted average with cell areas can be used.

2.2. Matrix-free implementation. In the DGS iteration, only algebraic manipulation not
the geometric realization of the indices is needed. The neighboring indices of (i, j) for
u, v, p can be found in Fig 2 in the previous section.

When implement the Gauss-Seidel iteration for finite difference methods, the direct
update version is more efficient than the correction version. For example, the update for
velocity u(i,j) for i=2:n-1,j=2:n is simply

1 u(i,j) = (hˆ2*f1(i,j) + u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1)...

2 - h*(p(i,j) - p(i,j-1)))/4;

For boundary and near boundary subscript i,j, the stencil should be modified to impose
the boundary condition. Red-black ordering can be used to vectorize the Gauss-Seidel
iteration. See Programming of Finite Difference Methods.

After the update of velocity, we need to update the residual for the continuity equation,
i.e. compute rp = g − Bu = g + div u which can be done efficiently using the index
relation of p and u, v; see again Fig. 2 (C).

http://www.math.uci.edu/~chenlong/226/FDMcode.pdf
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Then we apply Gauss-Seidel iteration to solve the elliptic equation Apep = rp. Here
recall that Ap = BBᵀ is the discrete Laplacian of pressure with Neumann boundary con-
dition, i.e., (4,−1,−1,−1,−1) for interior cells and (3,−1,−1,−1) for boundary cells
and (2,−1,−1) for corners (dividing by h2). One Gauss-Seidel iteration for interior cells
will be

1 ep(i,j) = (hˆ2*rp(i,j) + ep(i-1,j) + ep(i+1,j) + ep(i,j-1) + ep(i,j+1))/4;

For boundary and corner cells, the stencil should be modified accordingly.
Then we should bring the correction eq to u, v, p through the distributive matrix.

Note that Bᵀ is just the discrete gradient operator. For example, the update of u will be

1 u(i,j) = u(i,j) + (ep(i,j) - ep(i,j-1))/h;

The update of pressure requires the computation of Apep. Its matrix-free version is

1 p(i,j) = p(i,j) - (4*ep(i,j)-ep(i-1,j)-ep(i+1,j)-ep(i,j-1)-ep(i,j+1))/hˆ2;

Again for boundary and corner cells, the stencil should be modified accordingly.

2.3. Transfer Operators. At u- and v-grid points, we consider six-points restrictions, and
at p-grid points, a four-point cell-centered restriction. In the finite difference method, the
restriction is also applied to function values which is different with the finite element one
in a scaling.

In stencil notation, the restriction operators are

Ru
h,2h =

1

8




1 2 1
∗

1 2 1


 , Rv

h,2h =
1

8




1 1
2 ∗ 2
1 1


 , Rp

h,2h =
1

4




1 1
∗

1 1


 .

Let us explain the restriction operator Ru
h,2h in details. Look at Figure 3 for a vertical edge

center degree of freedom. Point 0 is a degree of freedom for u on the coarse grid, and
points 1, · · · , 6 are degree of freedoms on the fine grid. Therefor the restriction at point 0
will be

u0 =
1

8
(u1 + u2 + 2u3 + 2u4 + u5 + u6).

The explanation for the restriction operators Rv
h,2h and Rp

h,2h are similar. Note that Ru
h,2h

and Rv
h,2h are only defined for interior edges. For Dirichlet boundary conditions, the cor-

rection and residual on the boundary edges are zero.14 SOLVING STOKES EQUATION WITH MAC METHOD
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FIGURE 9. Sketch of restriction for vertical edge center dof 0 on coarse grid, (A) fine grid
points 1, · · · , 6 and coarse grid point 0 on fine grid. (B). coarse grid point 0.

For the prolongation operators, we typically apply bilinear interpolation of neighboring
coarse-grid unknowns in the staggered grid. See Figure 10. To compute the values at points
5, · · · , 10, we first calculate a bilinear function using coarse grid points 1, · · · , 4, and the
value for fine grid points 5, · · · , 10 are just the evaluation of the bilinear function at these
points. One can eaily derive that:
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4
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4
u2, u6 =
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4
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1

4
u1,
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1

4
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1

2
(u5 + u9), u8 =

1

2
(u6 + u10).

Following the same the approach, one can also derive formular for computing horizontal
edge center degree of freedoms on fine grid from coarse grid solution. Piecewise constant
(first-order) interpolation for the p variables.
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FIGURE 10. Sketch of prolongation for vertical edge center dofs. (A) coarse grid points
1, · · · , 4 on coarse grid. (B). coarse grid points 1, · · · , 4 and fine grid
points 5, · · · , 10 on fine grid.

4.5.2. V-cycle. A sketch of matlab routine for V-cycle. This code can be written in matrix
free form, i.e, we don’t have to write the whole matrix of MAC discretization. One can
treat solution u, v, p and right hand side f1, f2 as matrix.

FIGURE 3. Sketch of restriction for vertical edge center dof 0 on coarse
grid, (A) fine grid points 1, · · · , 6 and coarse grid point 0 on fine grid.
(B). coarse grid point 0.

For the prolongation operators, we typically apply bilinear interpolation of neighboring
coarse-grid unknowns in the staggered grid. See Figure 4. To compute the values at points
5, · · · , 10, we first calculate a bilinear function using coarse grid points 1, · · · , 4, and the
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value for fine grid points 5, · · · , 10 are just the evaluation of the bilinear function at these
points. One can easily derive that:

u5 =
3

4
u1 +

1

4
u2, u6 =

3

4
u2 +

1

4
u1,

u9 =
3

4
u3 +

1

4
u4, u10 =

3

4
u4 +

1

4
u3,

u7 =
1

2
(u5 + u9), u8 =

1

2
(u6 + u10).
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edge center degree of freedoms on fine grid from coarse grid solution. Piecewise constant
(first-order) interpolation for the p variables.
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FIGURE 10. Sketch of prolongation for vertical edge center dofs. (A) coarse grid points
1, · · · , 4 on coarse grid. (B). coarse grid points 1, · · · , 4 and fine grid
points 5, · · · , 10 on fine grid.

4.5.2. V-cycle. A sketch of matlab routine for V-cycle. This code can be written in matrix
free form, i.e, we don’t have to write the whole matrix of MAC discretization. One can
treat solution u, v, p and right hand side f1, f2 as matrix.

FIGURE 4. Sketch of prolongation for vertical edge center dofs. (A)
coarse grid points 1, · · · , 4 on coarse grid. (B). coarse grid points
1, · · · , 4 and fine grid points 5, · · · , 10 on fine grid.

Following the same approach, one can also derive formulae for computing horizontal
edge center degree of freedoms on the fine grid from the coarse grid solution. Piecewise
constant interpolation for the pressure p is used.

2.4. Multigrid Cycles. We formulate multigrid cycles below and explain afterwards.

1 function [u,v,p] = MG-MAC(u,v,p,f,g,J,m)

2 %% Direct update form of Multigrid Method

3 if J == 1 % coarsest level: solve by DGS iterations

4 for i = 1:100

5 [u,v,p] = DGS(u,v,p,f,g);

6 end

7 end

8 % Presmoothing

9 for i = 1:m

10 [u,v,p] = DGS(u,v,p,f,g);

11 end

12 % Form residual

13 [ru,rv,rp] = FormResidual(u,v,p,f,g,J);

14 % Restriction

15 [ruc,rvc,rpc] = Res(ru,rv,rp);

16 % Coarse grid correction

17 [euc,evc,epc] = MG-MAC(0,0,0,ruc,rvc,rpc,J-1,m);

18 if W-cycle

19 [euc,evc,epc] = MG-MAC(euc,evc,epc,ruc,rvc,rpc,J-1,m); % W-cycle



8 LONG CHEN

20 end

21 % Prolongation

22 [u,v,p] = [u,v,p] + Pro(euc,evc,epc);

23 % Postsmoothing

24 for i = 1:m

25 [u,v,p] = DGS’(u,v,p,f,g);

26 end

Since we consider a square domain with uniform grids, one parameter J for level is
sufficient. The mesh size will be h = 1/2J and the index range can be determined accord-
ingly. All matrix-vector product can be implemented in matrix-free fashion.

The boundary condition of u,v can be imposed in the input and all later smoothing are
applied to the interior nodes only. When form the residual and prolongate the correction,
all boundary values of the residual or correction are set to zero.

In the post-smoothing, it is better to reserve the ordering of G-S iteration so that the
operator is symmetric.

REFERENCES

[1] A. Brandt and N. Dinar. Multigrid solutions to elliptic flow problems. In S. Parter, editor, Numerical Methods
for Partial Differential Equations, pages 53–147. Academic Press, New York, 1979. 4, 5

[2] F. Harlow and J. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with
free surface. Physics of fluids, 8(12):2182, 1965. 1


	1. MAC Scheme
	2. Multigrid Methods for MAC Scheme
	2.1. Distributive Gauss-Seidel Relaxation
	2.2. Matrix-free implementation
	2.3. Transfer Operators
	2.4. Multigrid Cycles

	References

