
FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS
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ABSTRACT. We give a brief introduction to finite element methods for solving Maxwell
equations.

Recall that the time-harmonic Maxwell equation for electric field E is

∇× (µ−1∇×E)− ω2ε̃E = J̃

∇ · (εE) = ρ.

The time-harmonic Maxwell equation for magnetic fieldH is

∇× (ε̃−1∇×H)− ω2µH = ∇× J̃
∇ · (µH) = 0.

Those are obtained by Fourier transform in time for the original Maxwell equations. Here
ω is a positive constant called the frequency. For derivation and physical meaning, we refer
to Brief Introduction to Maxwell’s Equations. In this note, we shall consider finite element
methods for solving time-harmonic Maxwell equations.

1. INTRODUCTION

Let Ω be a bounded Lipschitz domain in R3. We introduce the Sobolev spaces

H(curl ; Ω) = {v ∈ L2(Ω), curlv ∈ L2(Ω)},
H(div; Ω) = {v ∈ L2(Ω),div v ∈ L2(Ω)}

The intensity fields (E,H) belong toH(curl ; Ω) while the flux field (D,B) inH(div; Ω).
We use the unified notation H(d; Ω) with d = grad , curl , or div. Note that H(grad ; Ω)
is the familiar H1(Ω) space. One can verify that H(d; Ω) is a Hilbert space with respect
to the inner product

(u, v) + ( du, dv).

The norm for H(d; Ω) is the graph norm

‖u‖ d,Ω :=
(
‖u‖2 + ‖ du‖2

)1/2
.

We recall the integration by parts for vector functions below. Formally the boundary
term is obtained by replacing the Hamilton operator∇ by the unit outwards normal vector
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n. For example, ∫
Ω

∇u · φdx = −
∫

Ω

u∇ · φdx+

∫
∂Ω

nu · φdS,∫
Ω

∇× u · φdx =

∫
Ω

u · ∇ × φ dx+

∫
∂Ω

n× u · φ dS,∫
Ω

∇ · uφdx = −
∫

Ω

u · ∇φdx+

∫
∂Ω

n · uφdS.

The weak formulation is obtained by multiplying the original equation by a smooth test
equation and applying the integration by parts. The boundary condition will be discussed
later. For time-harmonic Maxwell equations, the weak formulation for E is

(1) (µ−1∇×E,∇× φ)− ω2(ε̃E, φ) = (J̃ , φ) ∀φ ∈ D(Ω).

And the equation forH is

(2) (ε̃−1∇×H,∇× φ)− ω2(µH, φ) = (J̃ ,∇× φ) ∀φ ∈ D(Ω).

In (2) the source ∇ × J̃ is understood in the distribution sense and ∇×, as the adjoint
of itself, is moved to the test function. The coefficient ε̃ and the current J̃ are in general
complex functions and so are E,H .

The divergence constraint is build into the weak formulation when ω 6= 0. For example,
the condition div(µH) = 0 in the distribution sense can be obtained by applying div

operator to the equation ∇× (ε̃−1∇×H)− ω2µH = ∇× J̃ . When ω = 0, we need to
impose the constraint explicitly; see (4).

To simplify the discussion, we consider the following model problems:

• Symmetric and positive definite problem:

(3) ∇× (α∇× u) + βu = f in Ω, u× n = 0 on ∂Ω

• Saddle point system:

(4) ∇× (α∇× u) = f in Ω, ∇ · (βu) = 0 in Ω, u× n = 0 on ∂Ω.

where α and β are uniformly bounded and positive and real coefficients. The right hand
side f is divergence free, i.e. div f = 0 in the distribution sense.

2. INTERFACE AND BOUNDARY CONDITIONS

For a vector u ∈ R3 and a unit norm vector n, we can decompose u into the normal
component and the tangential component as

u = (u · n)n+ n× (u× n) = un + uτ .

The vector u× n is also on the tangent plane and orthogonal to the tangential component
uτ which is a clockwise 90◦ rotation of uτ on the tangent plane. Consequently {u ×
n,uτ ,n} forms an orthogonal basis of R3; see Fig. 1.

The interface condition can be derived from the continuity requirement for piecewise
smooth functions to be in H(d; Ω). Let Ω = K1 ∪K2 ∪ S with interface S = K̄1 ∩ K̄2.
Let ui ∈ H(d;Ki). Define u ∈ L2(Ω) as

u =

{
u1 x ∈ K1,

u2 x ∈ K2.
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1.4. Negative Index Media 7

and may be thought of as the sources of the fields in Eq. (1.3.17). In Sec. 14.6, we examine
this interpretation further and show how it leads to the Ewald-Oseen extinction theorem
and to a microscopic explanation of the origin of the refractive index.

1.4 Negative Index Media

Maxwell’s equations do not preclude the possibility that one or both of the quantities
ε, µ be negative. For example, plasmas below their plasma frequency, and metals up to
optical frequencies, have ε < 0 and µ > 0, with interesting applications such as surface
plasmons (see Sec. 8.5).

Isotropic media with µ < 0 and ε > 0 are more difficult to come by [153], although
examples of such media have been fabricated [381].

Negative-index media, also known as left-handed media, have ε, µ that are simulta-
neously negative, ε < 0 and µ < 0. Veselago [376] was the first to study their unusual
electromagnetic properties, such as having a negative index of refraction and the rever-
sal of Snel’s law.

The novel properties of such media and their potential applications have generated
a lot of research interest [376–457]. Examples of such media, termed “metamaterials”,
have been constructed using periodic arrays of wires and split-ring resonators, [382]
and by transmission line elements [415–417,437,450], and have been shown to exhibit
the properties predicted by Veselago.

When εrel < 0 and µrel < 0, the refractive index, n2 = εrelµrel, must be defined by
the negative square root n = −√εrelµrel. Because then n < 0 and µrel < 0 will imply
that the characteristic impedance of the medium η = η0µrel/n will be positive, which
as we will see later implies that the energy flux of a wave is in the same direction as the
direction of propagation. We discuss such media in Sections 2.12, 7.16, and 8.6.

1.5 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are
given below:

E1t − E2t = 0

H1t −H2t = Js × n̂

D1n −D2n = ρs
B1n − B2n = 0

(1.5.1)

where n̂ is a unit vector normal to the boundary pointing from medium-2 into medium-1.
The quantities ρs, Js are any external surface charge and surface current densities on
the boundary surface and are measured in units of [coulomb/m2] and [ampere/m].

In words, the tangential components of the E-field are continuous across the inter-
face; the difference of the tangential components of the H-field are equal to the surface
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current density; the difference of the normal components of the flux density D are equal
to the surface charge density; and the normal components of the magnetic flux density
B are continuous.

The Dn boundary condition may also be written a form that brings out the depen-
dence on the polarization surface charges:

(ε0E1n + P1n)−(ε0E2n + P2n)= ρs ⇒ ε0(E1n − E2n)= ρs − P1n + P2n = ρs,tot

The total surface charge density will be ρs,tot = ρs+ρ1s,pol+ρ2s,pol, where the surface
charge density of polarization charges accumulating at the surface of a dielectric is seen
to be (n̂ is the outward normal from the dielectric):

ρs,pol = Pn = n̂ · P (1.5.2)

The relative directions of the field vectors are shown in Fig. 1.5.1. Each vector may
be decomposed as the sum of a part tangential to the surface and a part perpendicular
to it, that is, E = Et + En. Using the vector identity,

E = n̂× (E× n̂)+n̂(n̂ · E)= Et + En (1.5.3)

we identify these two parts as:

Et = n̂× (E× n̂) , En = n̂(n̂ · E)= n̂En

Fig. 1.5.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following
vectorial forms, where the second form is obtained by taking the cross product of the
first with n̂ and noting that Js is purely tangential:

n̂× (E1 × n̂)− n̂× (E2 × n̂) = 0

n̂× (H1 × n̂)− n̂× (H2 × n̂) = Js × n̂
or,

n̂× (E1 − E2) = 0

n̂× (H1 −H2) = Js
(1.5.4)

The boundary conditions (1.5.1) can be derived from the integrated form of Maxwell’s
equations if we make some additional regularity assumptions about the fields at the
interfaces.

FIGURE 1. Field directions at boundary. Extract from Electromagnetic
Waves and Antennas by Orfanidis [9].

We can always define derivative du in the distribution sense. To be a weak derivative, we
need to verify it coincides with the piecewise derivative, i.e.,

du =

{
du1 x ∈ K1,

du2 x ∈ K2.

To do so, let φ ∈ D(Ω), by the definition of the derivative of a distribution

〈du, φ〉 := 〈u, d∗φ〉 = (u1, d∗φ) + (u2, d∗φ)

= ( du1, φ) + ( du2, φ) + 〈γS(u1 − u2), φ〉S ,

where d∗ is the adjoint of d in L2-inner product and γS is an appropriate restriction of
functions on the interface depending on the differential operators. The negative sign in
front of u2 is from the fact the outwards normal direction of K2 is opposite to that of K1.

Then u ∈ H(d; Ω) if and only if
u1|S = u2|S for d = grad ,

n× u1|S = n× u2|S for d = curl ,

n · u1|S = n · u2|S for d = div .

Here strictly speaking, the restriction operator (·)|S should be replaced by appropriate trace
operators which will be discussed in the next section.

So for a function in H(curl ; Ω), its tangential component should be continuous across
the interface and for a function in H(div; Ω), its normal component should be continuous.
This will be the key of constructing finite element spaces for these Sobolev spaces.

When the interface S contains surface charge ρS and surface current JS , the interface
condition forH andD is changed to

(H1 −H2)× n = JS , (D1 −D2) · n = ρS .

The interface condition forH can be build into the right hand side of the weak formulation
(2) using a surface integral on S.

The boundary condition can be thought of as an interface condition when one side of the
interface is the free space. The following are popular boundary conditions for Maxwell-
type equations.

• If one side is a perfect conductor, then σ = ∞. By Ohm’s law, to have a finite
current, the electric field E should be zero. So we obtain the boundary condition
E × n = 0 for a perfect conductor.

• Impedance boundary condition •1
•1 more on this

n×H − λEt = g.
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3. TRACES

The trace of functions in H(d; Ω) is not simply the restriction of the function values
since the differential operator div or curl controls only partial component of the vector
function. The best way to look at the trace is, again, through integration by parts.

Recall that γ : H1(Ω) → H1/2(∂Ω) is the trace operator for H1 functions. It is
continuous and surjective. When u is also continuous on Ω̄, γu = u|∂Ω.

3.1. H(div; Ω) space. For functions v ∈ C1(Ω), φ ∈ C1(Ω) and Ω is a domain with
smooth boundary, we have the following integration by parts

(5)
∫

Ω

div vφ dx = −
∫

Ω

v · gradφ dx+

∫
∂Ω

n · v φdS.

Then we relax the smoothness of functions and the domain such that (5) still holds. First
since for Lipschitz domains, the normal vector n of ∂Ω is well defined almost everywhere,
we can relax the smoothness of domain Ω to be a bounded Lipschitz domain only. Second
we only need v ∈ H(div; Ω) and φ ∈ H1(Ω) so that the volume integral is finite. Then
(5) can be used to define the trace of v ∈ H(div; Ω):

(6) 〈n · v, γφ〉∂Ω :=

∫
Ω

div vφ dx+

∫
Ω

v · gradφdx, for all φ ∈ H1(Ω).

In the left hand side of (6) we change from a boundary integral to an abstract duality action
and γ : H1(Ω)→ H1/2(∂Ω) is the trace operator forH1 functions. Since γ is an onto, γφ
will run over all H1/2(∂Ω) when φ runs over H1(Ω). That is n · v is a dual of H1/2(∂Ω).
Note that ∂(∂Ω) = 0. So the right space for n · v is H−1/2(∂Ω). We summarize as the
following theorem.

Theorem 3.1 (Trace ofH(div; Ω)). Let Ω ⊂ R3 be a bounded Lipschitz domain in R3 with
unit outward normal n. Then the mapping γn : C∞(Ω̄)→ C∞(∂Ω) with γnv = n · v|∂Ω

can be extended to a continuous linear map γn from H(div; Ω) onto H−1/2(∂Ω), namely

(7) ‖γnv‖−1/2,∂Ω . ‖v‖div,Ω.

and the following Green’s identity holds for functions v ∈ H(div; Ω) and φ ∈ H1(Ω)

(8) 〈γnv, γφ〉∂Ω =

∫
Ω

div vφdx+

∫
Ω

v · gradφ dx.

The space H0(div; Ω) can be defined as

H0(div; Ω) = {v ∈ H(div; Ω) : γnv = 0}.

Proposition 3.2. The trace operator γn from H(div; Ω) onto H−1/2(∂Ω) is surjective
and there exists a continuous right inverse. Namely for any g ∈ H−1/2(∂Ω), there exists
a function v ∈ H(div; Ω) such that γnv = g in H−1/2(∂Ω) and ‖v‖div,Ω . ‖g‖−1/2,∂Ω.

Proof. For a given g ∈ H−1/2(∂Ω), let f = −|Ω|−1〈g, 1〉. We solve the Poisson equation
−∆p = f with Neumann boundary condition ∂np = g:

(∇p,∇φ) = (f, φ) + 〈g, γφ〉∂Ω for all φ ∈ H1(Ω).

The existence and uniqueness of the solution p ∈ H1(Ω)∩L2
0(Ω) is ensured by the choice

of f which satisfies the compatable condition with the boundary data g. By choosing
v ∈ H1

0 (Ω), we conclude −∆p = f in L2(Ω), i.e. v = ∇p is in H(div; Ω).



FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS 5

Note that 〈γnv, γφ〉 = (div v, φ) + (v,∇φ) = −(f, φ) + (∇p,∇φ) = 〈g, γφ〉. Since
γ : H1(Ω) → H1/2(∂Ω) is surjective, we conclude γnv = g in H−1/2(∂Ω). That is we
found a function v ∈ H(div; Ω) such that γnv = g.

From the stability of −∆ operator, we have

‖v‖ = ‖∇p‖ . ‖f‖+ ‖g‖−1/2 . ‖g‖−1/2.

Together with the identity ‖ div v‖ = ‖f‖, we obtain ‖v‖div,Ω . ‖g‖−1/2,∂Ω. �

3.2. H(curl ; Ω) space. Similarly we can use the integration by parts∫
Ω

curlv · φdx =

∫
Ω

v · curlφ dx−
∫
∂Ω

(v × n) · φ dS

to define the trace of H(curl ; Ω). The trace only controls the tangential part of v|∂Ω.

Theorem 3.3 (Trace of H(curl ; Ω)). Let Ω ⊂ R3 be a bounded Lipschitz domain in R3

with unit outward normal n. Then the mapping γτ : C∞(Ω̄) → C∞(∂Ω) with γτv =
v|∂Ω × n can be extended by continunity to a continuous linear map γτ from H(curl ; Ω)
to H−1/2(∂Ω), namely

(9) ‖γτv‖−1/2,∂Ω . ‖v‖curl ,Ω.

and the following Green’s identity holds for functions v ∈ H(curl ; Ω) and φ ∈H1(Ω)

(10) 〈γτv, γφ〉∂Ω =

∫
Ω

v · curlφ dx−
∫

Ω

curlv · φdx.

The trace γτ from H(curl ; Ω) to H−1/2(∂Ω), however, is not surjective since in (10)
the test function φ can be further extend from H1(Ω) to H(curl ; Ω).

Let us denote by Γ = ∂Ω and introduce the tangential component trace πτ as πτv =
vτ = n× (v × n). The boundary pair can be written as

(11) 〈v × n,φ〉Γ = 〈v × n,φτ 〉Γ = 〈γτv, πτφ〉Γ.

Let curl Γ,divΓ be the curl ,div operators on the boundary surface Γ, which can be
defined intrinsically using metrics on the tangent planes. It is, however, advantageous to
define through the operator∇ in space and operations with the normal vector

n · (∇× v) = curl Γ(πτv) = divΓ(γτv).

For a function v ∈ H(curl ; Ω), curlv ∈ H(div; Ω) as div curlv = 0. Therefore
γn(∇ × v) = n · (∇ × v) = curl Γ(πτv) ∈ H−1/2(Γ), i.e., πτv ∈ H−1/2(curl Γ; Γ).
As its rotation, γτv ∈ H−1/2(divΓ; Γ). The duality pair in (11) is H−1/2(divΓ,Γ) −
H−1/2(curl Γ,Γ). The precise characterization of the trace operator is

γτ : H(curl ; Ω)→ H−1/2(divΓ; Γ)

and this mapping is onto. Details can be found in the book [6] (page 58–60) and [2]. Espe-
cially to verify the mapping is surjective, one has to construct a lifting operator (analogy of
Proposition 3.2) for a given trace in H−1/2(divΓ,Γ). Construction of such lifting operator
is technical and firstly by Tartar [11] which can be also found in [2].

The space H0(curl ; Ω) can be defined as

H0(curl ; Ω) = {v ∈ H(curl ; Ω) : γτv = 0}.
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4. WELL-POSEDNESS OF WEAK FORMULATIONS

Let V = H0(curl ; Ω). The weak formulation of (3) is: given an f ∈ L2(Ω), find
u ∈ V such that

(12) (α∇× u,∇× v) + (βu,v) = (f ,v) for all v ∈ V.

In (12), the first term is obtained by integration by part (moving∇× in front of φ to u)

(α∇× u,∇× φ) = (∇× (α×∇× u),φ) + (α∇× u,n× φ)∂Ω

and chose the test function φ ∈ V to remove the boundary term. The boundary condition
for u is of Dirichlet type: u× n = 0 on ∂Ω or more rigorously γτu = 0.

Assume the positive coefficients α and β are uniformly bounded below and above. The
well-posedness of (12) is then trivial since the bilinear form is equivalent to the inner prod-
uct of H(curl ; Ω). The existence and uniqueness of the solution to (12) can be obtained
by the Riesz representation theorem. The stability constant, however, will be proportional
to 1/β and thus will below up as β → 0. Unlike the Poisson equation, where (∇u,∇v)
will define an inner product on H1

0 (Ω), for space H0(curl ; Ω), the zero trace cannot take
care of the much larger kernel space of curl operator which consists of the image of grad
for simply connected domain Ω. We will revisit this issue (robustness as β → 0+) after we
have discussed the saddle point formulation.

For the saddle point formulation of Maxwell equation (4), the natural Sobolev space for
u is again V = H0(curl ; Ω) and the bilinear form

a(u,v) := (α∇× u,∇× v), for u,v ∈ H0(curl ; Ω),

which induces an operator A : V → V ′, 〈Au,v〉 = a(u,v).
As a function in H(curl ; Ω) space, however, the divergence operator cannot be applied

directly. It should be understood in the weak sense, i.e.,

−〈divw(βu), q〉 := (βu, grad q) ∀q ∈ Q := H1
0 (Ω).

We define the bilinear form

b(v, q) = (βv, grad q) = −(divw(βv), q), for v ∈ H0(curl ; Ω), q ∈ H1
0 (Ω)

which induces operator B : V → Q′ as 〈Bu, q〉 = b(u, q) for all q ∈ H1
0 (Ω) and

B′ : Q → V ′ as the dual of B. A Lagrangian multiplier p ∈ H1
0 (Ω) can be introduced to

impose the constraint divw(βu) = 0. That is we consider the inf-sup problem

inf
u∈V

sup
p∈Q

1

2
(α∇× u,∇× u)− (f ,u) + (βu,∇p).

The Euler’s equation is the following saddle point formulation of (4): given f ∈ V ′, find
u ∈ V, p ∈ Q s.t.

(13)
(
A B′

B O

)(
u
p

)
=

(
f
0

)
,

which is the operator form of the mixed formulation

(α∇× u,∇× v) + (βv,∇p) = (f ,v) ∀ v ∈ V,(14)

(βu,∇q) = 0 ∀ q ∈ Q.(15)

The well-posedness of the saddle point system (13) is a consequence of the inf-sup
condition of B and the coercivity of A in the null space X = ker(B) = H0(curl ; Ω) ∩
ker(divw); see Inf-sup conditions for operator equations.

http://www.math.uci.edu/~chenlong/226/infsupOperator.pdf
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Lemma 4.1. For β = 1, we have the inf-sup condition

(16) inf
p∈Q

sup
v∈V

〈Bv, p〉
‖v‖curl |p|1

= 1.

Proof. Here we follow the convention in the Stokes equation to write out the formulation
in term of the (negative) divergence operator B. It is more natural to show the adjoint
B′ = grad : H1

0 (Ω)→ H ′0(curl ; Ω) is injective. We can interpret

‖∇p‖V ′ = sup
v∈V

〈Bv, p〉
‖v‖curl

= sup
v∈V

(v,∇p)
‖v‖curl

,

and it suffices to prove

(17) ‖∇p‖V ′ = ‖∇p‖.

First by the Cauchy-Schwarz inequality and the definition of the curl norm, we have
‖∇p‖V ′ ≤ ‖∇p‖. To prove the inequality in the opposite direction, we simply chose
v = ∇p. Then 〈Bv, p〉 = |p|21 and ‖v‖curl = ‖v‖ = |p|1. Therefore ‖∇p‖V ′ ≥ ‖∇p‖ by
the definition of sup. �

Exercise 4.2. For coefficients βmin ≤ β ≤ βmax, prove that

βmin|p|1 ≤ sup
v∈V

〈Bv, p〉
‖v‖curl

≤ βmax|p|1.

The coercivity in the null space

X = ker(B) = H0(curl ; Ω) ∩ ker(divw)

can be derived from the following Poincaré-type inequality.

Lemma 4.3 (Poincaré inequality. Lemma 3.4 and Theorem 3.6 in [5]). When Ω is simply
connected and ∂Ω consists of only one component, we have

(18) ‖v‖ . ‖curlv‖ for v ∈ X.

A heuristic argument for the above Poincaré inequality is: using identity −∆u =
grad divu+ curl curlu, we get ‖u‖1 h ‖curlu‖ for u ∈ X . Together with the Poincaré
inequality ‖u‖ . ‖u‖1, we get the desired result. The subtlety to make this argument rig-
orous is the boundary condition. For u ∈ H0(curl ; Ω), only the tangential component is
zero while to apply Poincaré inequality for H1 vector function, both tangential and normal
component trace should be zero.

A sketch of a proof of (18) is: show that curl : X → H := H0(div; Ω) ∩ ker(div)
is one-to-one and continuous. Then by the open mapping theorem, the inverse is also
continuous which leads to (18). For each ψ ∈ H , i.e., divψ = 0, with the assumption of
the domain Ω, there exists a vector potential v such that ψ = curlv, which is not unique.
But if we further require div v = 0 and impose boundary condition v × n = 0, then the
potential is unique. Details can be found in [5, Chapter 1 Theorem 3.6]. The condition: Ω
is simply connected and ∂Ω consists of only one component is to remove the non-trivial
harmonic form; see §5.4. We will name it as trivial topology.

Another approach is through the compact embedding. By modifying the proof in [5,
Chapter 1, Section 3.4], i.e. using Hs instead of H2-regularity of Poisson equation, we
can prove the following result.



8 LONG CHEN

Lemma 4.4. For a Lipschitz polyhedron domain Ω, there exists a constant s ∈ (1/2, 1]
depending only on Ω such that X ↪→Hs(Ω) and

‖v‖s . ‖v‖curl ;Ω.

Consequently X is compactly imbedded in L2(Ω). When Ω is convex, s = 1.

With the compact embedding, we can mimic the proof for H1-type Poincaré inequality
to get (18). Here is a sketch.
Proof of Lemma 4.3 using Lemma 4.4. Assume (18) does not hold. Then we can find
a sequence {vn} ⊂ X s.t. ‖vn‖ = 1 and ‖curlvn‖ ≤ 1/n → 0 as n → +∞. As
X ↪→ L2 is compact, we can find an L2-convergent subsequence {vnk

} which converges
to an element v ∈ L2(Ω). Then by the definition of weak derivatives and convergence
in L2, we can show curlv = 0, (v,∇φ) = 0 for all φ ∈ H1

0 (Ω), and ‖v‖ = 1. As γτ
is continuous, we also have γτv = 0, i.e. v ∈ X . Then there exists a scalar potential
p ∈ H1

0 (Ω) s.t. v = ∇p. Taking φ = p in (v,∇φ) = 0, we obtain ‖∇p‖ = 0 and thus
p = 0,v = 0. Contradicts with the condition ‖v‖ = 1. �

We summarize the well-posedness as the following theorem.

Theorem 4.5. Let Ω be a Lipschitz polyhedron domain and Ω is topologically trivial. Then
there exists a unique solution (u, p) to the saddle point system (13) and

‖u‖+ ‖α1/2 ∇× u‖+ ‖β1/2 ∇p‖ . ‖f‖V ′ .

Furthermore if div f = 0, then the Lagrange multiplier p = 0.

Proof. The well-posedness is from Brezzi theory. When div f = 0, chose the test function
v = ∇p in (14), we get ‖β1/2∇p‖ = 0 which implies p = 0 as p ∈ H1

0 (Ω). �

Now we revisit the stability of weak formulation (12). We further require div f = 0.
We consider the stability in the space X for which we can apply Poincaé inequality (18) to
obtain a coercivity even β is near 0.

Theorem 4.6. Let Ω be a Lipschitz polyhedron domain and β be a positive constant. For
a given f ∈ V ′ and div f = 0, there exists a unique solution u to the symmetric and
positive definite problem (12) and

‖u‖curl .
1

αmin
‖f‖V ′ ,

with stability constant independent of β.

Proof. As the bilinear form is equivalent to the inner product of H(curl ; Ω), the existence
and uniqueness of the solution u to (12) can be obtained by the Riesz representation the-
orem. As β > 0 and div f = 0, we take v = ∇p in (12) to conclude divw u = 0, i.e.
u ∈ X . Then we can apply Poincaé inequality (18) to obtain a coercivity

αmin(‖u‖2 + ‖∇ × u‖2) . a(u,u) = (f ,u) . ‖f‖V ′‖u‖curl

from which the desired stability follows. �

5. FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS

In this section we first present two finite element spaces for Maxwell equations, dis-
cuss the interpolation error, and give convergence analysis of finite element methods for
Maxwell equations using these spaces.
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5.1. Edge Elements. We describe two types of edge elements developed by Nédélec [7, 8]
in 1980s. We also briefly mention the implementation of these elements in MATLAB
and recommend the readers to do the project Project: Edge Finite Element Method for
Maxwell-type Equations.

5.1.1. First family: lowest order. For the k-th edge ek with vertices (i, j) and the direction
from i to j, the basis φk and corresponding degree of freedom lk(·) are

φk = λi∇λj − λj∇λi,

lk(v) =

∫
ek

v · t ds ≈ 1

2
[v(i) + v(j)] · ek,

where the quadrature is exact when v · t is linear.
We verify the duality lk(φk) = 1 as follows

φk(i) · ek = ∇λj · ek =

∫
ek

∇λj · t ds = λj(j)− λj(i) = 1

φk(j) · ek = ∇λi · ek =

∫
ek

∇λi · t ds = λi(j)− λi(i) = −1,

and consequently lk(φk) = 1.
If we change the integral to another edge (m,n). If (m,n)∩ (i, j) = ∅, then λi|emn

=
λj |emn

= 0. Without loss of generality, consider m = i and n /∈ {i, j}. Then in the
basis φk either ∇λj · tmn = 0 or λj |emn = 0 and therefore φk · tmn = 0. This verifies
li(φk) = 0 for i 6= k.

The lowest order edge element is

NE0 = span{φk, k = 1, 2, · · · , 6}

which is a linear polynomial. For a 2D triangle, the formulae for the basis is the same
and three basis functions on a triangle is shown below We also show three basis function

FIGURE 2. Basis of NE0 in a triangle.

associated to three edges on one face in a tetrahedron in Fig. 3. Notice that the vector field
φk of edge k is orthogonal to other edges.

The lowest order element NE0 is not P3
1 whose dimension is 4 × 3 = 12. In other

words, the lowest order edge element is an incomplete linear polynomial space and can
only reproduce constant vector. From the approximation point of view, the L2 error can be
only first order. The H(curl ) norm of error is also first order.

http://www.math.uci.edu/~chenlong/iFEM/project/html/projectMaxwell.html
http://www.math.uci.edu/~chenlong/iFEM/project/html/projectMaxwell.html
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FIGURE 3. Three basis of NE0 associated to three edges on one face in a tetrahedron.

5.1.2. Second family: linear polynomial. In addition to φk, for each edge, we add one
more basis

ψk = λi∇λj + λj∇λi,

l1k(v) = 3

∫
ek

v · t(λi − λj) ds ≈
1

2
[v(i)− v(j)] · ek.

The quadrature is obtained by the Simpson’s rule with the fact λi − λj = 0 at the middle
point, which is exact when v · t is linear. Obviously {lk(·), l1k(·), k = 1, 2, · · · , 6} are
linear independent. We then show it is dual to {φk,ψk}

The Simpson’s rule is exact for l1k(ψk) and thus

l1k(ψk) =
1

2
[ψk · eij(i)−ψk · eij(j)] =

1

2
[(λi − λj)(i)− (λi − λj)(j)] = 1.

The verification of ψk · el = 0, for l 6= k, is similar as before. Therefore {l1k} is a dual
basis of {ψk}.

We need to verify one more duality

lk(ψl) = 0, l1k(φl) = 0, ∀l = 1, 2, · · · , 6.
We only need to worry about l = k since ψk · tl = φk · tl = 0 if k 6= l. Notice that ψk · tk
is odd (respect to the middle point) and thus the integral is zero. Similarly φk · tk = 1 and
thus l1k(φk) = 0.

The lowest order second family of edge element is

NE1 = span{φk,ψk, k = 1, 2, · · · , 6},
which is a full linear polynomial and will reproduce linear polynomials. Therefore the L2-
norm of error will be second order. The H(curl ) norm, however, is still first order since
ψk = ∇(λiλj) and ∇×ψk = 0 has no contribution to the approximation of curl. Plot of
ψk in a triangle is given below

The global finite element space is obtained by gluing piecewise one. Using the barycen-
tric coordinate in each tetrahedron, for an edge, the basis φk,ψk can be extend to all tetra-
hedron surrounding this edge. Given a triangulation T , let E be the edge set of T . Define

NE0(T ) = span{φe, e ∈ E},
NE1(T ) = span{φe,ψe, e ∈ E}.

To show the obtained spaces are indeed inH(curl ; Ω), it suffices to verify the tangential
continuity of the piecewise polynomials. Given a triangular face f , in one tetrahedron, we
label the vertex opposite to f as xf and the corresponding barycentric coordinate will be
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FIGURE 4. Basis vectors ψk of NE1 in a triangle.

denoted by λf . For an edge e using xf as an vertex, the corresponding basis φe or ψe is a
linear combination of λi∇λf and λf∇λi. Restrict to f , λf |f = 0 and∇λf×nf = 0 since
∇λf is a norm vector of f . Therefore we showed that φe|f × nf = ψe|f × nf = 0 for
edges e containing nf . Therefore for v ∈ NE0(T ) or NE1(T ), the trace v|f ×nf depends
only on the basis function of edges of f which is the ideal continuity of a H(curl ; Ω)
function.

We introduce the canonical interpolation to the edge element space. Given a triangula-
tion Th with mesh size h. Define Icurl

h : V ∩ dom(Icurl
h )→ NE0(Th) as follows: given a

function u ∈ V , define uI = Icurl
h u ∈ NE0(Th) by matching the d.o.f.

le(I
curl
h u) = le(u) ∀e ∈ Eh(Th).

Namely

uI =
∑
e∈Eh

(∫
e

u · tds

)
φe

For the second family edge element space, add l1e(·) and ψe.

Exercise 5.1. In one tetrahedron τ , verify Icurl
h to NE0(τ) will preserve constant vector

and linear vectors for space NE1(τ).

For the error ∇ × (u − uI), if we want to use Bramble-Hilbert lemma, we need to
introduce the Piola transformation to connecting the curl operators ∇× and ∇̂× in the
reference element. Instead we introduce the lowest order face element for H(div; Ω) and
use the commuting diagram to change to the estimate of L2-error.

5.2. Face Element. Give a face f formed by vertices [i, j, k], we introduce a basis vector

(19) φl = 2(λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj),

and the corresponding degree of freedom

lf (v) =

∫
fl

v · ndS ≈ v(c) · nf |f |,

where the quadrature is exact for linear polynomial v.

Exercise 5.2. [Face element]
(1) Verify {lfi , i = 1, 2, 3, 4} is a dual basis of {φfj , j = 1, 2, 3, 4}.
(2) For a triangle in 2D, the degree of freedom remains the same. Write out the basis

functions.
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We define the lowest order face element space, known as Raviart-Thomas element [10]

RT0(τ) = span{φfj , j = 1, 2, 3, 4}
and the global version

RT0(T ) = span{φf , f ∈ F(T )},
where F(T ) is the set of all faces of a triangulation T . A plot of basis for 2D RT element
can be found in Fig. 5.

FIGURE 5. Basis vectors φk of RT0 in a triangle.

Given a triangulation Th with mesh size h. Define Idiv
h : V → RT0(Th) as follows:

given a function u ∈ V , define uI = Idiv
h u ∈ RT0(Th) by matching the d.o.f.

lf (Idiv
h u) = lf (u) ∀f ∈ Fh(Th).

Namely

uI =
∑
f∈Fh

(∫
f

u · ndS

)
φf

We verify the crucial commuting property.

Lemma 5.3. For function u smooth enough so that Icurl
h u and Idiv

h ∇×u are well defined,
then

∇× Icurl
h u = Idiv

h ∇× u.

Proof. By the Stokes’ theorem and the definition of interpolation operators:∫
f

Idiv
h (∇× u) · nf dS =

∫
f

(∇× u) · nf dS =

∫
∂f

u · tds

=

∫
∂f

Icurl
h u · tds =

∫
f

(∇× Icurl
h u) · nf dS.

�

The commuting diagram can be extended to the whole sequence and summarized in
Fig. 6.

Exercise 5.4. Prove the commuting diagram shown in Fig. 6.

Remark 5.5. The domain of the canonical interpolation Icurl
h , Idiv

h are smooth subspace
of H(curl ; Ω) or H(div; Ω), respectively. For example, even for a H1 function u, the
trace u restricted on an edge is not well defined. The arguments above require the function
smooth enough. Quasi-interpolation, which relaxes the smoothness of the function and
preserves the nice commuting diagram, have been constructed recently.
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grad

grad

curl

curl

div

div

P 1 NE0 RT 0 P 0

H1 H(curl) H(div) L2

Igradh
Icurlh Idivh I0h

∂ ∂ ∂

vertices edges faces tetrahedron

FIGURE 6. Commuting diagram of finite element spaces.

5.3. Interpolation Error Estimate. We first prove a stability result for Idiv
h operator.

Lemma 5.6. For v ∈H1(Ω), we have

‖Idiv
h v‖ . ‖v‖+ h‖∇v‖.

Proof. It suffices to prove the inequality restricted to one element K. By definition and
Minkowski inequality,

‖Idiv
h v‖0,K = ‖

∑
f∈Fh(K)

lf (v)φf‖ ≤
∑

f∈Fh(K)

|lf (v)|‖φf‖0,K .

We use the scaled trace theorem for w ∈ H1(K)

‖w‖0,f . h−1/2‖w‖0,K + h1/2‖∇w‖0,K .
and the scaling of φf to get the desired result. �

Lemma 5.7. Assume curlu ∈ H1(Ω) and u ∈ Dom(Icurl
h ). Let uI = Icurl

h u. Then we
have the first order interpolation error estimate

‖∇ × (u− uI)‖ . h|curlu|1.

Proof. We use the commutative property and the fact that Idiv
h preserves the constant vector

to get

‖∇ × (u− uI)‖ = ‖(I − Idiv
h )∇× u‖ = ‖(I − Idiv

h )(∇× u− c)‖.
Then by the stability of Idiv

h operator, we get

‖(I − Idiv
h )(∇× u− c)‖ . ‖curlu− c‖+ h|curlu|1.

As it holds for arbitrary constant vector c, choosing c as the average of curlu and using
Poincaré inequality to get the desired error estimate. �
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Notice that L2-error estimate of the interpolation error for Icurl
h is not easy and can be

proved using an inequality for le(v) on the reference element; see [4, Theorem 3.14].

5.4. de Rham complex and finite element de Rham complex. We revisit the diagram

R ⊂ // H1(Ω)

Igradh

��

grad // H(curl ; Ω)

Icurlh

��

curl // H(div; Ω)

Idivh

��

div // L2(Ω)

I0h
��

// 0

R ⊂ // Sh
grad // Vh

curl // Uh
div // Qh // 0

,

where Sh is the standard linear finite element space, Vh is the lowest order edge element
space, Uh the lowest face element space, and Qh is piecewise constant space.

The above sequence is called a Hilbert complex, known as de Rham complex, satisfy-
ing: curl grad = 0,div curl = 0 and each operator has a closed range (which implies a
corresponding Poincaré inequality). The sequence is exact if ker( d) = img( d−) where
we use d− to denote the operator before d in the sequence. When the domain Ω has trivial
topology in the sense it is simply connected and its boundary is also connected, one can
verify the top sequence is exact.

In general ker( dk+1)/img( dk) is defined as the k-th cohomology space of Ω. They are
finite dimensional vector spaces whose dimensions are the so-called Betti numbers βk of
the manifold Ω. For a bounded connected region in R3, β0 = 1 (number of connected com-
ponent), β1 = genus (number of handles), β2 = connected components of the boundary
(number of holes), and β3 = 0.

We give an example on the exactness. Consider a vector function u and curlu = 0 in a
connected domain Ω. Try to find a scalar function p s.t. u = grad p, where p is called the
potential function of u. The idea is to use the line integral along a curve C connecting a
fixed point x0 and x, i.e, p(x) =

∫
C[x0,x]

u(s) · ds. Then one can easily verify u = grad p.
The famous example is the gravitation field.

To be a well defined function, the line integral should be independent of the choice of
the curve. For any two curvesC1 andC2 with the same ending vertices forms the boundary
of a 2-D surface S. Then from curlu = 0, we can apply the Stokes theorem to conclude∫

S

curlu · dS =

∫
∂S

u · ds =

∫
C1

u · ds−
∫
C2

u · ds = 0.

Here the negative sign is due to the orientation. The topological constraint comes from the
fact not every close curve is a boundary of a close surface, e.g., a tours.

For a divergence free vector function u, find its vector potential φ is much harder.
Namely if div u = 0, there exists φ s.t. u = curlφ. We will skip it here but to men-
tion that the existence of such potential depends on the topology of the domain. A physical
example is the electric field generated by a charge at the origin

u(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
.

Then div u = 0 except the origin. But u cannot be written as curlφ as
∫
S
u · ndS = 4π

for any close and positive orientated surface S enclosing the origin.
In the diagram, the interpolation operators are not canonical interpolation operators

which are not well defined for H(d; Ω) space. We assume there exists quasi-interpolation
operators I d

h with the following properties
• dom(I d

h ) ⊆ H( d; Ω);
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• L2-stable: ‖I d
h v‖ . ‖v‖;

• projection: I d
h v = v if v is in finite element space;

• commutative with differential operators d I d
h = I d+

h d.

Such operators can be found in [1, page 65-67] and [3].
We will use the commuting property to verify that the bottom sequence is also exact,

which is called finite element de Rham complex. Given a function vh ∈ Vh and curl vh =
0, as Vh ⊂ H(curl ; Ω), we can find a potential p ∈ H1(Ω) s.t. vh = grad p. The
scalar function p may not be in the finite element space. We let ph = Igrad

h p and use the
commuting diagram to conclude

grad Igrad
h p = Icurl

h grad p = Icurl
h vh = vh.

Other blocks can be verified similarly. Modification to space with zero trace is also straight-
forward.

A systematic way of studying finite element methods using differential forms is known
as FEEC (finite element exterior calculus). Here we only give a glimpse and refer to the
survey by Arnold, Falk and Winther [1] for the general framework. For more specific
application to electromagnetism, we refer to Hiptmair [4].

5.5. Finite element approximation. For finite element approximation, we chose edge
element space Vh ⊂ H0(curl ; Ω) and define the subspace

Xh = Vh ∩ ker(divh),

where divh : Vh → Sh ⊂ H1
0 (Ω) is the discrete weak divergence operator defined as the

adjoint of grad , i.e.,

(divh vh, ph) := (vh, grad ph) ∀ph ∈ Sh.
Note that Xh 6⊂ X . We can lift vh ∈ Xh to X through L2-projection QX . That is:
v = QXvh ∈ X satisfies

(v, ξ) = (vh, ξ) ∀ξ ∈ X.
As X is a subspace of L2(Ω), such L2-projection exists and unique.

Lemma 5.8. Given vh ∈ Xh, let v = QXvh be its L2-projection to X . Then
(1) curl v = curl vh;
(2) ‖v‖ h ‖vh‖;
(3) ‖v − vh‖ . hs‖curl vh‖.

Proof. We first solve a Poisson equation: find p ∈ H1
0 (Ω) s.t.

(∇p,∇φ) = −(vh,∇φ) ∀φ ∈ H1
0 (Ω).

Then v = vh +∇p is orthogonal to∇H1
0 (Ω). (1) is then trivial as curl grad = 0.

By the property of L2-projection, ‖v‖ ≤ ‖vh‖. To control v − vh, we use the partial
orthogonality

(v − vh,∇φh) = (∇p,∇φh) = −(vh,∇φh) = 0 ∀φh ∈ Sh.
We claim∇× (Icurl

h v − vh) = 0 as

∇× Icurl
h v = Icurl

h (∇× v) = Icurl
h (∇× vh) = ∇× vh.

Then by the exactness of the finite element de Rham complex, there exists φh ∈ Sh s.t.
∇× (Icurl

h v − vh) = ∇φh. Then by the partial orthogonality

(v− vh, v− vh) = (v− vh, v−Icurl
h v) + (v− vh, Icurl

h v− vh) = (v− vh, v−Icurl
h v),
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which implies

(20) ‖v − vh‖ ≤ ‖v − Icurl
h v‖.

Then ‖vh‖ . ‖v‖ is from the triangle inequality and the L2-stability of Icurl
h .

To prove (3), we use the embedding result Lemma 4.4 and the interpolation error esti-
mate

‖v − vh‖ ≤ ‖v − Icurl
h v‖ . hs‖v‖s . hs‖curl v‖ = hs‖curl vh‖.

�

By the exact sequence, Vh = Xh ⊕ grad (Sh). The bilinear form a(·, ·) is not coercive
on Vh but on the subspace Xh due to the following discrete Poincaré inequality.

Lemma 5.9 (Discrete Poincaré inequality). When Ω is topologically trivial and Th is shape
regular. Then

‖vh‖ . ‖curl vh‖ for vh ∈ Xh.

Proof. It is not a simple consequence of the Poincaré inequality in Lemma 4.3 asXh 6⊂ X .
We lift vh to X , i.e. v = QXvh and apply Poincaré inequality to v. The desired discrete
version is from the properties of v in Lemma 5.8

‖vh‖ . ‖v‖ . ‖curl v‖ = ‖curl vh‖.

�

Now we can consider finite element discretization of the saddle point formulation: find
uh ∈ Vh, ph ∈ Sh s.t.

(α∇× uh,∇× vh) + (βvh,∇ph) = (f ,vh) ∀ vh ∈ Vh,(21)

(βuh,∇qh) = 0 ∀ qh ∈ Qh.(22)

The discrete inf-sup condition for divh is easy as its adjoint grad : Sh → Vh is injective.
The coercivity in ker(divh) is ensured by the discrete Poincaré inequality. Therefore the
well-posedness of the (21)-(22) is from Brezzi theory and we obtain the first order error
estimate. We summarize as the following theorem.

Theorem 5.10. There exists a unique solution (uh, ph) to (21)-(22). When curlu ∈
H1(Ω) and p ∈ H2(Ω), we have

‖α1/2∇× (u− uh)‖+ ‖β1/2∇(p− ph)‖ . h (|∇ × u|1 + |p|2) .

When div f = 0, we have both p = ph = 0 and

‖α1/2∇× (u− uh)‖ . h|∇ × u|1.

Proof. By Brezzi theory and interpolation error estimate, we have

‖α1/2∇× (u− uh)‖+ ‖β1/2∇(p− ph)‖ . ‖∇ × (u− uI)‖+ ‖∇(p− pI)‖
. h (|∇ × u|1 + |p|2) .

When div f = 0, we have both p = ph = 0. �

The symmetric formulation (12) is simpler and leave as an exercise.

Exercise 5.11. Present the finite element discretization of (12) and its corresponding error
estimate.
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