ADAPTIVE FINITE ELEMENT METHODS

LONG CHEN

Adaptive methods are now widely used in the scientific computation to achieve better
accuracy with minimum degree of freedom. In this chapter, we shall briefly survey re-
cent progress on the convergence analysis of adaptive finite element methods (AFEMs)
for second order elliptic partial differential equations and refer to Nochetto, Siebert and
Veeser [14] for a detailed introduction to the theory of adaptive finite element methods.

1. INTRODUCTION TO MESH ADAPTATION

We start with a simple motivation in 1D for the use of adaptive procedures. Given
Q=(0,1),agrid Ty = {x;}¥, of Q
O=xp<z1 < - 25< - <zany=1
and a continuous function v : {2 — R, we consider the problem of approximating u by a

piecewise constant function uy over 7. We measure the error in the maximum norm.
Suppose that u is Lipschitz in [0, 1]. Consider the approximation

un(z) = u(z;—1), forallaz; 1 <z < x;.
If the grid is quasi-uniform in the sense that h; = x; —x;—1 < C/N fori =1,--- N, then
it is easy to show that
(1) lu = unlloo < CNTHu' ||

We can achieve the same convergent rate N ~! with less smoothness of the function.
Suppose ||u'|| 1 # 0. Let us define a grid distribution function

1 xr

F(z):= / |u/ ()| dt.
[u'l[2 Jo

Then F : [0,1] — [0, 1] is a non-decreasing function. Let y; = ¢/N,i = 0,--- ,N be a

uniform grid. We choose z; such that F'(x;) = y;, see Fig. 1 for an illustration.

2|~

FIGURE 1. A grid distribution function

1



[ Y B U R S

2 LONG CHEN

Then
() / 1 |u'(t)| dt = F(y;) — Fyi—1) = N7,

and

Zq

() — ulzi1)| < / ol (1)) dt < N 11,

ZTi—1

which leads to the estimate
3) lu — un|loo < CN7/|| 1.

We use the following example to illustrate the advantage of (3) over (1). Let us consider
the function u(z) = z” with r € (0,1). Then v’ ¢ L>°(Q2) but u’ € L*(Q). Therefore
we cannot obtain optimal convergent rate on quasi-uniform grids while we could on the
correctly adapted grid. For this simple example, one can easily compute when

1/r
xi:(N) , forall0 <i <N,

estimate (3) will hold on the grid T = {z;}X, which has higher density of grid points
near the singularity of u.

In (2), we choose a grid such that a upper bound of the error is equidistributed. This is
instrumental for adaptive finite element methods on solving PDEs.

A possible MATLAB code is given below.

function x = equidistribution (M, x)

h = diff(x);

F = [0; cumsum(h.xM)];

F = F/F(end);

y = (0:1/(length(x)-1):1)";
x = interpl(F,x,Vy);

Examples of adaptive grids for two functions with singularity are plotted below.

(a) u(z) = z1/2 (b) u(z) = arctan((z — 0.5)/0.01)

FIGURE 2. Adaptive grids for two functions with singularity.

When applied to numerical solution of PDEs, the function u and its derivatives are
unknown. Only an approximated solution to the function w at grid points is available and
a good approximation of derivatives or a upper bound of the error should be computed by
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a post-processing procedure. Another difficulty is the mesh requirement in two and higher
dimensions. The mesh refinement, coarsening, or movement is much more complicated in
higher dimensions.

Exercise 1.1. We consider the piecewise linear approximation of a second differentiable
function in this exercise.

(1) When | f] is monotone decreasing, for a positive integer k, prove

%im/%ﬂﬂﬂm—mf1M£;<LmﬂﬂmWwﬂa

ZT; k3
(2) Let us be the nodal interpolation of u on a grid, i.e., uy is piecewise linear and
ur(x;) = u(x;) for all i. Prove thatif |u” («)| is monotone decreasing in (z;_1, x;),
then for x € (z;—1, 2;)

) 2
|wunu>s</‘|mgwﬂdﬁ -

Hint: Apply the inequality in part (1) to the expansion of u — uy in terms of the
barycentric coordinates, see Exercises in Chapter: Introduction to Finite Element
Methods.

(3) Give the condition on the grid distribution and the function such that the following
estimate holds and prove your result.

lu = wrlloe < Cllu"[l1/2N 72
2. SINGULARITY AND EQUDISTRIBUTION

In this section we first present several examples to show that the solution of elliptic
equation could have singularity when the domain is concave or the coefficient is discon-
tinuous. We then present a theoretical analysis of equidistribution which leads to optimal
order of convergence.

2.1. Lack of Regularity. In FEM, we have obtained a first order convergence of the linear
finite element approximation to the Poisson equation

4) —Au=f inQ, =0 ondf,

provided the solution u € H?({2). When the boundary of the domain is smooth or con-
vex and Lipschitz continuous, then A~1(L?(Q)) C H?*(Q). The requirements of ) is
necessary as shown by the following example.

Consider the domain  C R? which is defined in a polar coordinate as Q = {(r,0) :
O0<r<land0 <6< %} for1/2 < B < oo. Obviously if > 1 then 2 is convex, while
if 1/2 < 8 < 1 then € violates the condition of the regularity theory. Set v = 77 sin(36)
as the imaginary part of the analytic function 27, i.e., v = Img(z”) . According to the
properties of analytic function, we know Av = 0. With this fact, it is easy to verify that
u = (1 — r?)v is the solution of the equation (4) with f = 4(1 + 8)v € L?(f).

Now we check the regularity of u. The only possible singularity is at the origin. When
7 is near 0, the second derivative D®u ~ r#~2 for any |a| = 2. Considering the integral

1 1
DU deay s [ pouprar= [0ear
Q 0 0

Therefore u € H?(Q) if and only if 2(8 —2) +1 > —1,i.e., 8 > 1. Namely the domain {2
is convex. When f3 is fixed, by the same calculation, we see uw € H*(Q)) forany s < 1+ .
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If we look for the smoothness in WP () instead of H?(2), similar calculation reveals

that 5 > 2(1 — %) For this example, we conclude u belongs to H® for 1 < s < 3/2 and

W2P(Q) for 1 < p < 4/3.

In general, for a polygonal domain {2 with boundary 0} consisting of a finite number
of straight line segments meeting at vertices v; of interior angles o;,j = 1,--- , M, let us
introduce a the polar coordinates (r, ) at the vertex v; so that the interior of the wedge is
given by 0 < 6 < «a; and set 3; = 7/«;, then near v; the solution u behaves like

u(r,0) = kjrBj [Inr|™ sin(B;6) + w,

where k; is a constant called the stress intensity factors, m; = O unless 3; = 2,3,---,
and w € H?() is a smooth function. Globally it is easy to see that for any € > 0, u €
Hming Bi=€(Q) . In particular, u € H3/?7¢(Q) but u ¢ H?(Q) for concave polygonal
domains.

For a general elliptic equation

(5) —div(AVu) = fin Q,

the lack of regularity could also come from the discontinunity of the coefficients of A. See
the example designed by Kellogg [10] with discontinuous diffusion coefficients in the end
of this subsection.

When u € H'T¢(Q) with € € [0, 1], in view of the approximation theory, we cannot
expect the finite element approximation rate |ju — wr||1,o better than h¢ if we insist on
quasi-uniform grids. To improve the convergence rate for small ¢, the element size should
be adapted to the behavior of the solution. The element size in areas of the domain where
the solution is smooth can stay bounded well away from zero, and thus the maximal ele-
ment size h of a triangulation 7 is not a good measure of the approximation rate. For this
reason, N = #7 the number of elements is used, which is also proportional to the number
of degree of freedom. Note that N = O(h~?) for quasi-uniform grids.

We include some typical examples below and refer to :FEM [8] for numerical evidence
that finite element methods based on uniform refined grids will not give optimal order of
convergence. But a correctly adapted grid will recovery the optimal convergent order.

as a
o -1 0 Q 1 0
a as
~1
(a) L-shape problem (b) Crack problem (c) Jump coefficients

FIGURE 3. Lack of regularity of elliptic equations

L-shape problem. Let Q := (—1,1)?\{[0,1) x (—1,0]} be a L-shaped domain with a
reentrant corner.
—Au=0,inQ and u = gondf),
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We choose the Dirichlet boundary condition g such that the exact solution reads

2
u(r,0) = rs sin(gﬁ),

in the polar coordinates.

Crack problem. Let Q = {|z| + |y| < 1}\{0 < « < 1,y = 0} with a crack and the
solution u satisfies the Poisson equation

—Au=f,inQ? and u=uponlp,

where f = 1, I'p = 0f). We choose up such that the exact solution u in the polar
coordinates is
u(r,0) =r? sing - 11"2.
’ 2 4

Jump coefficients problem. Consider the partial differential equation (5) with Q = (—1,1)?
and the coefficient matrix A is piecewise constant: in the first and third quadrants, A =
a11; in the second and fourth quadrants, A = aol. For f = 0, the exact solution in the
polar coordinates has been chosen to be u(r, 0) = r7u(6), where

cos (5 —o)y) cos (0 — 5 + p)7) if 0<0< 73,
0) = cos (py)cos ((0 — 7+ o)) if £<0<m,
Y= cos (o) cos ((6 — 7 — p)y) if 7<6<37,
cos ((3 — p)vy) cos (6 — 2% — o)) if 3T <6 <o2m,

and the constants
v=0.1, p=mn/4, o= —14.9225565104455152,

and
ap = 161.4476387975881, as = 1.

For this example, we see
u € H(Q).

One can construct more singular function by choosing arbitrary small v; see Kellogg [10].

2.2. Equidistribution. The equidistribution principle has been widely used in the all adap-
tive finite element algorithms. But a theoretical justification of this principle is very dif-
ficult to be made precise. One early justification of this approach is due to Babuska and
Rheinboldt [1] and they provide a heuristic asymptotic analysis. In this section, we will
illustrate the equidistribution principle in a more elementary fashion. Through our sim-
ple theoretical analysis, we will see the equidistribution is indeed needed for optimal error
control, but on the other hand, we will show optimal convergent rate can still be maintained
when equidistribution are much relaxed.
We shall consider a simple elliptic boundary value problem

(6) —Au= finQ, u = 0 on 91,

where, for simplicity, we assume (2 is a polygon and is partitioned by a shape regular
conforming triangulation 7 with N number of triangles. Let Vy C Hg () be the corre-
sponding continuous piecewise linear finite element space associated with this triangula-
tion 7.

A finite element approximation of the above problem is to find ux € Vy such that

@) a(un,vn) = (f,on) Yoy € Vi,
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where
a(u,v) = / Vu-Vudz, and (f,v) = / fvdz.
Q Q
For this problem, it is well known that for a fixed finite element space Vy

(8) |u—uN|179: inf ‘U—'UN|LQ.
vNEVN

We then present a H' error estimate for linear triangular element interpolation in two
dimensions. We note that in two dimensions, the following two embeddings are both valid:

) w2H(Q) c wh2(Q) = HY(Q) and W>1(Q) C C(Q).
Given u € W?1(Q), let ur be the linear nodal value interpolant of u on Ty. For any
triangle 7 € Ty, thanks to (9) and the assumption that 7 is shape-regular, we have

|U - UI|1,T § |U\2,1,T-

As aresult,

lu — UIﬁ,Q S Z ‘u@lr
TETN

To minimize the error, we can try to minimize the right hand side. By Cauchy-Schwarz
inequality,

lul2,1,0 = Z lul2,1,- < ( Z 1) Z ul3 1)"? = NY3( Z jul3,, ).
TETN TETN TETN TETN
Thus, we have the following lower bound:
(10) (D 3y )2 = N7V ulp 0.
TETN

The equality holds if and only if

1
1) ul2,1,- = NIUlz,LQ

The condition (11) is hard to be satisfied in general. But we can considerably relax this
condition to ensure the lower bound estimate (10) is still achieved asymptotically. The
relaxed condition is as follows:

(12) [ul21,7 < ke N|Uul21,0
and
(13) > Ky <aNTh

TETN

When the above two inequalities hold, we have
lu—uri0 S N7V ulzq 0.
In summary, we have the following theorem.

Theorem 2.1. If Ty is a triangulation with at most N triangles and satisfying (12) and
(13), then

(14) lu—unly < lu—urlio S NY2|ulg 0.
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In the above analysis, we see how equidistribution principle plays an important role in
achieving asymptotically optimal accuracy for adaptive grids. We would like to further
elaborate that, in the current setting, equidistribution is indeed a sufficient condition for
optimal error, but by no means this has to be a necessary condition. Namely the equidis-
tribution principle can be severely violated but asymptoticly optimal error estimates can
still be maintained. For example, the following mild violation of this principle is certainly
acceptable:

c
(15) lulan,r < —lul2,1.0-
In fact, this condition can be more significantly violated on a finitely many elements {7}

(16) u

¢
2.1,r < ﬁ|u|2,1,sz~

It is easy to see if a bounded number of elements satisfy (16) and the rest satisfy (15), the
estimate (13) is satisfied and hence the optimal error estimate (14) is still valid.

As we can see that the condition (16) is a very serious violation of equidistribution
principle, nevertheless, as long as such violations do not occur on too many elements,
asymptotically optimal error estimates are still valid. This simple observation is important
from both theoretical and practical points of view. The marking strategy proposed by [9]
may also be interpreted in this way in its relationship with equidistribution principle.

As it turns out, rigorously speaking, we need a slightly stronger assumption on u
(namely smoother than TW2(12)), for example, u € W?2P?(Q) ! for some p > 1. This
assumption is true for most practical domains; see the discussion in the previous subsec-
tion. More precisely, for any p > 1, any IV, we have a constructive algorithm [3] to find a
shape-regular triangulation Ty with O(NN) elements such that

lul2,1,7 < coN " Mul2p0

As aresult, since |u — ur|1,0 < |u — ur|1 o, we have the following error estimate
~1/2
(17) lu—urla SNV ulzp0.

which is asymptotically best possible for an isotropic triangulation with O(N) elements.
Recent works have shown that the estimate (17) can be practically realized [6, 7, 13, 18]
by using appropriate a posteriori error estimates below.

3. NEWEST VERTEX BISECTION

In this section we shall give a brief introduction of the newest vertex bisection. We refer
to [12, 19, 6] for detailed description of the newest vertex bisection refinement procedure
and especially [6] for the control of the number of elements added by the completion
process.

We first recall two important properties of triangulations. A triangulation 7}, (also in-
dicated by mesh or grid) of 2 C R? is a decomposition of ) into a set of triangles. It is
called conforming if the intersection of any two triangles 7 and 7’ in 7}, either consists of
a common vertex x;, edge E or empty. An edge of a triangle is called non-conforming if
there is a vertex in the interior of that edge and that interior vertex is called hanging node.
See Fig. 3 (b) for an example of non-conforming triangles and hanging nodes. We would
like to keep the conformity of the triangulations.

lit actually suffices if M (V2u) € L (), where M (f) is the Hardy-Littlewood maximal function of f
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A triangulation Ty, is shape regular if
(18) max ———— < o

where diam(7) is the diameter of 7 and |7| is the area of 7. A sequence of triangulation
{Tk,k =0,1,---} is called uniform shape regular if o in (18) is independent with k.

The shape regularity of triangulations assures that angles of the triangulation remains
bounded away from 0 and 7 which is important to control the interpolation error in H*
norm and the condition number of the stiffness matrix. We also want to keep this property
of the triangulations.

After we marked a set of triangles to be refined, we need to carefully design the rule
for dividing the marked triangles such that the refined mesh is still conforming and shape
regular. Such refinement rules include red and green refinement [4], longest edge bisection
[16, 15] and newest vertex bisection [17]. We shall restrict ourself to the newest vertex
bisection method since it will produce nested finite element spaces and relatively easier to
generalize to high dimensions.

Given an initial shape regular triangulation 7q of €2, we assign to each 7 € Ty exactly
one vertex called the newest vertex. The opposite edge of the newest vertex is called
refinement edge. One such initial labeling is to use the longest edge of each triangle (with
a tie breaking scheme for edges of equal length). The rule of the newest vertex bisection
includes:

(1) atriangle is divided to two new children triangles by connecting the newest vertex
to the midpoint of the refinement edge;

(2) the new vertex created at a midpoint of a refinement edge is assigned to be the
newest vertex of the children.

It is easy to verify that all the descendants of an original triangle fall into four similarity
classes (see Figure 1) and hence the angles are bounded away from 0 and 7 and all tri-
angulations refined from 7j using newest vertex bisection forms a shape regular class of
triangulations.

NN

FIGURE 4. Four similarity classes of triangles generated by the newest
vertex bisection

Remark 3.1. If we always chose the longest edge as the refinement edge, this is known
as the longest edge bisection. It is possible to verify the uniformly shape regularity of the
produced mesh by using the geometry property; see [16, 15].

The triangulation obtained by the newest vertex might have hanging nodes. We have to
make additional subdivisions to eliminate the hanging nodes, i.e., complete the new parti-
tion. The completion should also follow the bisection rules to keep the shape regularity;
see Figures below for an illustration of the completion procedure.

Let M denotes the set of triangles to be refined. A standard iterative algorithm of the
completion is the following.
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(a) An initial triangulation  (b) Refine two triangles producing a(c) Refine one triangle to obtain a con-
non-conforming edge forming triangulation

FIGURE 5. An illustration of the completion procedure. The dot indi-
cates the refinement edge of each triangle.

function T = completion(T,M)
while M is not empty

Update T by bisecting each triangle in M;

Let now M be the set of non-conforming triangles.
end

We need to show the while loop will terminate. For two dimensional triangulation, this is
easy. Let us denote the uniform bisection of 7 as D(T ), i.e., every triangle is bisected into
two. Note that D(7) may not be conforming; see Fig 3 (b). But D?(T"), which corresponds
to bisecting every triangle twice, is always conforming since middle points of all edges are
added from 7 to D?(T). We consider the completion procedure as a procedure of splitting
edges. The edges split during the completion procedure is a subset of the edge set of T
which is finite and thus the completion will terminate.

If we ask more than the termination of the completion process and want to control the
number of elements refined due to the completion, we have to carefully assign the newest
vertex for the initial partition 7q. A triangle is called compatible divisible if its refinement
edge is either the refinement edge of the triangle that shares that edge or an edge on the
boundary. A triangulation 7 is called compatible divisible or compatible labeled if every
triangle is compatible divisible. Mitchell [11] proved that for any conforming triangulation
T, there exists a compatible labeling. Biedl et al. [5] give an O(N) algorithm to find a
compatible labeling for a triangulation with N elements.

Binev, Dahmen and DeVore [6] show that if M is the collection of all triangles marked
in going from a conforming divisible triangulation 7Ty to T} then

19) #Ti < #To + CHM,

where # A denotes the cardinality of the set A. That is the number of addition triangles
refined in the completion procedure is bounded by the number of marked triangles in the
I' sense. The inequality (19) cannot be true in the [*° sense. Refine one marked triangle
could trigger a sequence of triangles with length equals to its generation in the completion
procedure; see the following figure. The inequality (19) is crucial for the optimality of
adaptive finite element methods; see [6, 7].

We conclude this section by a remark that the bisection or the regular refinement in
three and higher dimensions is much more involved. The theoretical proof of the shape
regularity, the termination of completion, and the control of number of elements added in
the completion requires more careful combinatory study; see [14].
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4. RESIDUAL TYPE A POSTERIOR ERROR ESTIMATE
In this section we consider the linear finite element approximation of the Poisson
(20) —Au= finQ, u = 0 on 91,

and shall derive a residual type a posterior error estimate of the error |u — ur|q,q. Other
types of a posterior error estimator include: recovery type; solving local problem; solving
a dual problem; superconvergence result.

4.1. A local and stable quasi-interpolation. To define a function in the linear finite el-
ement space V7, we only need to assigned the value at interior vertices. For a vertex
x; € N(T), recall that 2; consists of all simplexes sharing this vertex and for an element
Q; = Uz, - Instead of using nodal values of the object function, we can use its integral
over );.
For an interior vertex x;, we define a constant function on §2; by A;u = |Q;]| 7! fQ u(x)dx.

To incorporate the boundary condition, when x; € 0f2, we define A;u = 0. We then define
the averaged interpolation IT7 : L' + V7 by

Hru= Y Au)e;.
z, €N(T)

Lemma 4.1. For u € H'(€),), we have the error estimate
[ — Trullo.r < hrlulro.-
Proof. For interior vertices, we use average type Poincaré inequality, to obtain

21 lu — Asullo,0, < Ch:|u

1,9

and for boundary vertices, we use Poincaré-Friedriches since then u|sn,naq = 0 and the
R?~! Lebesgue measure of the set 9§2; N O is non-zero. The constant C' in the equality
(21) can be chosen as one independent with €2; since the mesh is shape regular. Then we
use the partition of unity Zf:ll w; = 1 restricted to one element 7 to write

d+1 ) d+1
/ lu — rul®> = / ‘ E (u— Aju)p;| dz < E / lu — Asul? dzx
T T =1 i=17%

d+1

hTZ/Q |vu|2dg;§c7/ﬁ/Q |Vu|? dz.
i=1"3%% ™

A

O

We now prove that IT7 is stable in H' norm. Let us introduce another average oper-
ator A,: the L? projection to the piecewise constant function spaces on Tp,: (A u)|, =
7|7 [ u(z)da.

Lemma 4.2. Foru € H'(S),), we have the stability
Mrulyr S Julie, .
Proof. Using Poincaré inequality it is easy to see

lu—Arullo,r < hrluly,r



ADAPTIVE FINITE ELEMENT METHODS 11

We use the inverse inequality and first order approximation property of A, and Il to
obtain

|HTU - A‘ru|1,7— < h;lHHTu - ATUHO,T

h;l(nu Lyl

lruli,,

IN

or + = Artllor ) S lule.-

Theorem 4.3. For u € H'(Q), the quasi-interpolant Il 7u satisfies

1/2

Dol = Tgw)[§, + |V (u = Tirw)[5 . S lulia.
TET

4.2. Upper bound. The equidistribution principle suggested us to equidistribute the quan-
tity |ul2 1,-. It is, however, not computable since v is unknown. One may want to approx-
imate it by |u7|2,1,-. For linear finite element function w7, we have |ur|2,1,, = 0 and
thus no information of |u|2 1 - will be obtained in this way. More rigorously, the derivative
of the piecewise constant vector function Vus will be delta distributions on edges with
magnitude as the jump of Vu7 across the edge. On the other hand, Au € L?()) implies
Vu € H(div; Q), i.e., Vu - n. is continuous at an edge e where n. is a unit norm vector of
e. For the finite element approximation uy € V7, it is easy to see Vu - ne is not contin-
uous (although the tangential derivative Vu - ¢, is). The discontinuity of norm derivative
across edges can be used to measure the error Vu — Vur.

More precisely, let £7 denote the set of all interior edges, for each interior edge e € £,
we fix a unit norm vector n.. Let 7, and 75 be two triangles sharing the edge e. The jump
of flux across e is defined as

Vur -ne] = Vur - nelr, — Vur - nel,.
We define h as a piecewise constant function on 7, that is for each element 7 € T,
(22) hlry = hy = |7]'/2.
We also define a piecewise constant function on £ as
(23) hle = he := (hr, + hry) /2,
where e = 71 N 72 is the common edge of two triangles. We provide a posterior error
estimate for the Poisson equation with homogenous Dirichlet boundary condition below
and refer to [19] for general elliptic equations and mixed boundary conditions.
Theorem 4.4. For a given triangulation T, let ut be the linear finite element approxi-

mation of the solution u of the Poisson equation. Then there exists a constant C; > 0
depending only on the shape regularity of T such that

1/2
h  u—urh <G (D IRARL+ Y IRy nl)

TET e€lr
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Proof. For any w € H}(2) and any wy € V7, we have

alu — ur,w)

= Z/v u—ur) - V(w—wy)dx

TET
= Z/ —A(u—ur)(w —wy dX—FZ Vu—uT) n(w — wr)dS
TET TET
= Z/fw wde—l—Z/VuT ne](w — wy) dS
TET ecép
< Y fllos i (w = wr)llor + Y 1B [Vur - nelo.cllh™2(w = wr)llo.e
TET ecéy,
1/2
S <Z IRFIG -+ ||h_1/2[VuT-ne]<2),e>
TET e€Er

1/2
<Z 1hH(w = wr)|[§ , + [V (w — wT)I%;) -

TET
In the last step, we have used the trace theorem with the scaling argument to get
S w = wr o + b2V (w - wr)

Now chose wr = 7w by the quasi-interpolation operator introduced in Theorem 4.3, we
have

1/2

(25) (Z 1A= (w0 — wr) 2 + 1V (w — wT>||3,T> < Jwl,o-
TET

Then we end with

a(u — ur,w 1/2
uurl = sp WU (S g S Rl )

w
weH(Q) | |1 reT ecE
Il

To guide the local refinement, we need to have an element-wise (or edge-wise) error
indicator. For any 7 € T and any v € V7, we define

1/2
26) n(erm) = (113 + > I 2oy nld.)

e€oT
For a subset M C T, we define

n(vr, M) = [277 (v, 7 }1/2~

With these notation, the upper bound (24) can be simply written as

27 lu —url10 < Cin(ur, T).

Remark 4.5. The local version of the upper bound (27)
lu—urli- < Cinlur,T)

does not hold in general.
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4.3. Lower bound. We shall derive a lower bound of the error estimator 7 through the
following exercises. The technique is developed by Verfiirth [19] and known as bubble
functions. Let u be the solution of Poisson equation —Awu = f with homogeneous Dirich-
let boundary condition and w7 be the linear finite element approximation of u based on a
shape regular and conforming triangulation 7.

Exercise 4.6. (1) For a triangle 7, we denote V., = {f, € La(7)| f; = constant}
equipped with L? inner product. Let \;(x),i = 1,2, 3 be the barycenter coordi-
nates of x € 7, and let b, = A1\ A3 be the bubble function on 7. We define
B:fr = frbr.

Prove that B, : V, — V = H}(Q) is bounded in L? and H! norm:

| B- f~ 0,7 = CHf'r”O,Tv and ||V(B‘rf7)||0,r S h:lnf'r”Oﬁr'

(2) Using (1) to prove that

1B fellor S lu—url e+ 1h(f = fo)llo.r

(3) For an interior edge e, we define V, = {g. € L?(E) | g. = constant}. Suppose e
has end points z;, and = ;, we define b, = \;A; and B, : Ve — V by Bege = gebe.
Let w, denote two triangles sharing e. Prove that
(a) HgE”O,e = C”BegeHO,m

(b) HBeQEHO,we S hé/QHQEHO,e and,
© [IV(Bege)llow, < he'*lgello.e-

(4) Using (3) to prove that

1B 2[Vur - nellloe S 1B fllow. + 1w —urliw,-

(5) Using (1) and (4) to prove the lower bound of the error estimator. There exists a
constant C'y depending only on the shape regularity of the triangulation such that
for any piecewise constant approximation f, of f € L?,

Con(ur, T) < lu—urlig+ Y IA(f — f2)|%
TE€TH

5. CONVERGENCE

Standard adaptive finite element methods (AFEM) based on the local mesh refinement
can be written as loops of the form

(28) SOLVE — ESTIMATE — MARK — REFINE.

Starting from an initial triangulation 7y, to get Ti41 from 7, we first solve the equation to
get uy, based on Ty, (the indices of second order like u-; will be contracted as uy). The error
is estimated using wuy, and 7 and used to mark a set of of triangles in 7. Marked triangles
and possible more neighboring triangles are refined in such a way that the triangulation is
still shape regular and conforming.
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5.1. Algorithm. The step SOLVE is discussed in Chapter: Iterative method, where effi-
cient iterative methods including multigrid and conjugate gradient methods is studied in
detail. Here we assume that the solutions of the finite dimensional problems can be solved
to any accuracy efficiently.

The a posteriori error estimators are an essential part of the ESTIMATE step. We have
given one in the previous section and will discuss more in the next section.

The a posteriori error estimator is split into local error indicators and they are then
employed to make local modifications by dividing the elements whose error indicator is
large and possibly coarsening the elements whose error indicator is small. The way we
mark these triangles influences the efficiency of the adaptive algorithm. The traditional
maximum marking strategy proposed in the pioneering work of Babuska and Vogelius [2]
is to mark triangles 7* such that

n(ur, ") > 9111&7}_(T}(U7‘7T), for some 6 € (0,1).
TE

Such marking strategy is designed to evenly equi-distribute the error. Based our relaxation
of the equidistribution principal, we may leave some exceptional elements and focus on
the overall amounts of the error. This leads to the bulk criterion firstly proposed by Déorfler
[9] in order to prove the convergence of the local refinement strategy. With such strategy,
one defines the marking set M+ C 7T such that

(29) n*(ur, M) > 0n*(ur,T), forsome 6 (0,1).

We shall use Dorfler marking strategy in the proof.

After choosing a set of marked elements, we need to carefully design the rule for divid-
ing the marked triangles such that the mesh obtained by this dividing rule is still conform-
ing and shape regular. Such refinement rules include red and green refinement [4], longest
refinement [16, 15], and newest vertex bisection [17, 12]. In addition we also would like
to control the number of elements added to ensure the optimality of the refinement. To this
end we shall use the newest vertex bisection discussed in the previous section.

Let us summarize AFEM in the following subroutine:

[wy,Ty] = AFEM (71, f,tol,0)
% AFEM compute an approximation wy by adaptive finite element methods
% Input: 71 an initial triangulation; f data; tol <<1 tolerance; 6 E(O,ﬂ
% Output: wuy linear finite element approximation; 7Ty the finest mesh
n=1k=0;
while n > tol
k=k+1;
SOLVE Poisson equation on 7 to get the solution wuyg;
ESTIMATE the error by n=n(uk,Tk);
MARK a set My C T with minimum number such that 5%(ug, Mg) > 002 (uk, Te);
REFINE T € My and necessary triangles to a conforming triangulation Tg41;
end

ug =ug; T7 = Ti;

5.2. Contraction between two levels. We shall prove the convergence of AFEM by show-
ing the contraction of the total error between two levels. That is

(30) u — tpp1]? 4+ on? (s, Tgr) <6 [ Ju— wgl? + an®(ue, Ta) | -

One may wonder why the error and the error estimator is considered together. Can we
prove the reduction of error itself? By the orthogonality, one can easily conclude the error
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is non-increasing, i.e.
lu — w1t < |u — uglr-

The equality could hold if the refinement did not introduce interior nodes for triangles and
edges; see Example 3.6 and 3.7 in [13]. A close look reveals that when the solution does
not change, the error estimator 7 will be reduced by a factor less than one due to the change
of mesh size and the Dorfler marking strategy.

To prove (30) let us begin with the following properties of the error estimator and error
in consecutive levels T and Ty 1.

Lemma 5.1. Givena 0 € (0,1), let Ty,11 be a conforming and shape regular triangula-
tion which is refined from a conforming and shape regular triangulation Ty, using Dorfler
marking strategy (29). Let ujy1 and uy, be solutions of (4) in V41 and Vy, respectively.
Then we have

(1) orthogonality: |u — upi1]> = |u — up|? — |upr1 — uplss
(2) upper bound: |u — uy|3 < C1n?(uy, Tr) for some constant Cy depending only on
the shape regularity of T,

(3) continuity of error estimator: for any € > 0, there exists a constant C¢ such that
2 2 2
0 (kg1 Tew1) < (1 + €)n” (ur, Teg1) + Celupgr — ugly;

(4) contraction of error estimator: n?(uy, Te+1) < pn?(ug, Tr) for some p € (0,1)
depending only on the shape regularity of Ty and the parameter 0 used in the
Dorfler marking strategy.

Proof. (1) is trivial since w41 is the H' projection and Uk+1 — Uk € Vi41 by the nestness
of Tx and Tr1. (2) has been proved in the previous section.

We now prove (3). The part contains element-wise residual ||k f]| is unchanged since
we do not change the triangulation. For each e € £, let 7 € T such that e € d7. From
the triangle inequality and the fact V(ug1 — uy) is piecewise constant, we have

B2 (Vi1 - nelllo.e < IR [Vuy, - ne]
< ||h1/2[Vuk ‘e

o + 1BV (w1 — ug) - nel[loes

0,e + Clugs1 — ugl1,r

Square both sides, apply the Young’s inequality 2ab < ea? + ¢~ b and sum all edges to
get the desired inequality.

To prove (4), we study in detail the change of the error estimator due to the bisection of
a triangle. Suppose 7 is bisected to 7, and 75. We shall first prove element-wise contraction
of error indicator: There exists a number p € (0, 1) depending only on the shape regularity
of 7, such that

31) n? (wp, 71) + 0 (ur, 2) < pn?(ug, 7).

To distinguish the difference mesh size function, we use hj1 and hj to denote the mesh
size function defined on T, and 7.1, respectively. Thanks to our definition, i 1 =
|| =1/2|7] =1/2 hi’T. The part involving element residual is reduced by one half:

1
s FI2, + Nhwsn fII2, = 5\%ka3~

For the jump of gradient on the edges, an important observation is that [Vuy - n.] = 0
for the new created edge inside 7. For other edges on the boundary of 7, h. is reduced by
a factor due to the definition of h. and the shape regularity of the triangulation while the
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jump [Vuy, - ne] remains unchanged. So >
factor strictly less than one.

We then move the global version. Recall that M, C Ty is the marked set. We may need
to refine more triangles to recover the conformity of the triangulation and thus denote the
set of refined triangles by M. Since My C My, we have n?(uy, My) > 002 (ug, Tr).
We use ﬂk+1 C Tr+1 to denote the set of triangles obtained by refinement of that in M;,.
Obviously 75\ M}y = Tr+1\ M1 are untouched triangles. We then have

0% (uk, Ter1) = 07 (e, Trg 1 \Mieg1) + 07 (uge, Miey)
< 0 (uk, Te\My) + pn? (ug, M)
= (ur, Tr) — (1 = p) n* (ug, My,)
< (up, T) = 0(1 = p) 0 (un, Tr)
[1 =001 = p)]n” (ur, Tr)-
We obtain (4) with p =1 —6(1 — p) € (0,1). O

h1/2 Vot - nel|2 . is also reduced by a
ecoT 0,e

We are in the position to prove the contraction result.

Theorem 5.2. Givena 6 € (0,1), let Ti,41 be a conforming and shape regular triangula-
tion which is refined from a conforming and shape regular triangulation Ty, using Dorfler
marking strategy (29). Let uiy1 and uy, be solutions of (4) in Vi1 and Vy, respectively.
Then there exist constants § € (0, 1) and « depending only on 0 and the shape regularity
of Ti. such that

(32) lu =t + an?(upgr, Tepr) < 0 [Ju—wl + an®(ug, Te) | -

Proof. Let p € (0,1) be the constant in Lemma 5.1 (4). Since p € (0, 1), we can choose
¢ € (0,1) and small enough such that p(1 + €) < 1 and let = C1. Let § be a number
in (0, 1) whose value will be clear in a moment. We then have

u = upia [+ an®(urtr, Trer)
=lu — ug|? + an? (w1, Terr) = |upgr — ugl?
<Olu — ug| + (1= 8)|u — ugl? + (1 + €) n*(ug, Trta)
<6lu—ug|} + (1 = 8)Cin? (uk, Tw) + ap(L + €) n* (ug, Tr)

1-0)C1 +ap(l+e
< IU—UkﬁJr( ) 15 o )772(@%,77@) .

In the first step, we simply add o n? (uj41, Tx+1) to the orthogonality identity (Lemma 5.1

(1)). Then we split |u—u|? and apply the continuity of error estimator (Lemma 5.1 (3)) to

cancel |uy1—ug|?. Next we apply the upper bound (Lemma 5.1 (3)) to (1—48)|u—wuy |3 and

the reduction of  (Lemma 5.1 (4)). The last step is a simple rearrangement of constants.
This suggests us to choose § such that

(1-9)Cr+ap(l+e)
5 .

Namely
_ Ci+ap(l+e)
C1+«a '

Recall that we choose € such that p(1 +¢) < 1,50 ¢ € (0, 1). The desired result (32) then
follows. g

(33) )
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5.3. Convergence. As a consequence of the contraction of the total error between two
levels, we can prove AFEM will stop in finite steps for a given tolerance tol and produce
a convergent approximation u s based on an adaptive grid 7;. We refer to [18, 7] for the
analysis of complexity which is much more involved.

Theorem 5.3. Let uy, and T be the solution and triangulation obtained in the k-th loop in
the algorithm AFEV, then there exist constants § € (0,1) and « depending only on 0 and
the shape regularity of Ty such that

(34) lu — ug|? + an?(ur, Te) < Cod*,

and thus the algorithm AFEM will terminate in finite steps.
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