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Adaptive methods are now widely used in the scientific computation to achieve better
accuracy with minimum degree of freedom. In this notes, we give a briefly introduction to
adaptive finite element methods via adaptive mesh refinements (AMR).

1. INTRODUCTION TO MESH ADAPTATION

We start with a simple motivation taken from [6] in one dimension for the use of adaptive
mesh refinement. Given Ω = (0, 1), a grid TN = {xi}Ni=0 of Ω

0 = x0 < x1 < · · ·xi < · · · < xN = 1,

and a continuous function u : Ω → R, we consider the problem of approximating u by
a piecewise constant function uN over TN . The approximation error is measured in the
maximum norm.

Suppose that u is Lipschitz in [0, 1]. Consider the approximation

uN (x) := u(xi−1), for xi−1 ≤ x < xi, i = 1, · · ·N.
If the grid is quasi-uniform in the sense that hi = xi− xi−1 ≤ C/N for i = 1, · · ·N , then
it is easy to show that

(1) ‖u− uN‖∞ ≤ CN−1‖u′‖∞
We can achieve the same convergent rate N−1 with less smoothness of the function.

Suppose ‖u′‖L1 6= 0. Let us define a grid distribution function

F (x) :=
1

‖u′‖L1

∫ x

0

|u′(t)|dt.

Then F : [0, 1] → [0, 1] is a non-decreasing function which resembles the cumulative
distribution function in probability theory. Let yi = i/N, i = 0, · · · , N be a uniform grid
of [0, 1] along the y-axis. We choose xi such that F (xi) = yi, see Fig. 1 for an illustration.

Then

(2)
∫ xi

xi−1

|u′(t)|dt = F (yi)− F (yi−1) = N−1,

and

|u(x)− u(xi−1)| ≤
∫ xi

xi−1

|u′(t)|dt ≤ N−1‖u′‖L1 ,

which leads to the estimate

(3) ‖u− uN‖∞ ≤ CN−1‖u′‖L1 .

To achieve the first order convergence, we still require the function is differentiable but u′

is now measured in a much weaker norm.
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Figure 1: Grid distribution function
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FIGURE 1. A grid distribution function.

We use the following example to illustrate the advantage of (3) over (1). Let us consider
the function u(x) = xr with fixed r ∈ (0, 1). Then u′ /∈ L∞(Ω) but u′ ∈ L1(Ω).
Therefore we cannot obtain optimal convergent rate on quasi-uniform grids while we could
on a correctly adapted grid. For this simple example, one can easily compute when

xi =

(
i

N

)1/r

, for all 0 ≤ i ≤ N,

estimate (3) will hold on the grid TN = {xi}Ni=0 which has higher density of grid points
near the singularity of u.

A possible MATLAB code is given below, where M is a nonnegative function defined on
the input grid x. The output is a new grid which equidistributes the distribution function
F ∝

∫
M .

1 function x = equidistribution(M,x)

2 h = diff(x);

3 F = [0; cumsum(h.*M)];

4 F = F/F(end);

5 y = (0:1/(length(x)-1):1)’;

6 x = interp1(F,x,y);

Examples of adaptive grids for two functions with singularity are plotted below.

u = x1/2

grid: x

(a) u(x) = x1/2

u = atan((x-0.5)/0.01)
grid: x

(b) u(x) = arctan((x− 0.5)/0.01)

FIGURE 2. Adaptive grids for two functions with singularity.
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In (2), we choose a grid such that a upper bound of the error is equidistributed. This
is instrumental for adaptive finite element methods on solving PDEs. When applied to
numerical solution of PDEs, the function u and its derivatives are unknown. Only an ap-
proximated solution to the function u at grid points is available and a good approximation
of derivatives or an upper bound of the error should be computed by a post-processing
procedure. When generalizing the adaptive procedure to two and higher dimensions, an-
other difficulty is the mesh requirement, coarsening, or movement which is much more
complicated in higher dimensions.

Exercise 1.1. We consider the piecewise linear approximation of a second differentiable
function in this exercise.

(1) When |f | is monotone decreasing, for a positive integer k, prove

1

(k − 1)!

∫ xi+1

xi

|f(x)|(x− xi)k−1 dx ≤ 1

k!

(∫ xi+1

xi

|f(x)|1/k dx

)k
.

(2) Let uI be the nodal interpolation of u on a grid, i.e., uI is piecewise linear and
uI(xi) = u(xi) for all i. Prove that if |u′′(x)| is monotone decreasing in (xi−1, xi),
then for x ∈ (xi−1, xi)

|(u− uI)(x)| ≤
(∫ xi

xi−1

|u′′(s)|1/2 ds

)2

.

(3) Give the condition on the grid distribution and the function such that the following
second order estimate holds and prove your result.

‖u− uI‖∞ ≤ C‖u′′‖1/2N−2.

2. SINGULARITY

In this section we present several examples to show that the solution of elliptic equation
could have singularity when the domain is concave or the coefficient is discontinuous.

In Introduction to Finite Element Methods, we have obtained a first order convergence
of the linear finite element approximation to the Poisson equation

(4) −∆u = f in Ω, u = 0 on ∂Ω,

provided the solution u ∈ H2(Ω). When the boundary of the domain is smooth or con-
vex and Lipschitz continuous, then ∆−1(L2(Ω)) ⊂ H2(Ω). The requirements of Ω is
necessary as shown by the following example.

Consider the domain Ω ⊂ R2 which is defined in a polar coordinate as Ω = {(r, θ) :
0 < r < 1 and 0 < θ < π/β} for 1/2 < β < ∞. Obviously if β ≥ 1 then Ω is
convex, while if 1/2 < β < 1 then Ω violates the condition of the regularity theory. Set
v = rβ sin(βθ) as the imaginary part of the analytic function zβ , i.e., v = Img(zβ) .
According to the properties of analytic functions, we know ∆v = 0. With this fact, it is
easy to verify that u = (1− r2)v is the solution of the equation (4) with f = 4(1 + β)v ∈
L2(Ω).

Now we check the regularity of u. The only possible singularity is at the origin. When
r is near 0, the second derivative Dαu ∼ rβ−2 for any |α| = 2. Considering the integral∫

Ω

|Dαu|2 dxdy .
∫ 1

0

|Dαu|2r dr =

∫ 1

0

r2(β−2)+1 dr.

http://www.math.uci.edu/~chenlong/226/Ch2FEM.pdf
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θ = 240◦

β = 3/4

θ = 160◦

β = 9/8

FIGURE 3. Circular domains

Therefore u ∈ H2(Ω) if and only if 2(β − 2) + 1 > −1, i.e., β > 1. Namely the domain
Ω is convex. When β is fixed, by the same calculation, we conclude u ∈ Hs(Ω) for
any s < 1 + β. If we look for the smoothness in W 2,p(Ω) instead of H2(Ω), similar
calculation reveals that β > 2(1− 1

p ). For this example, we conclude u belongs to Hs(Ω)

for 1 ≤ s < 3/2 and W 2,p(Ω) for 1 ≤ p < 4/3.
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FIGURE 4. Regularity index for Poisson equations on polygons. Spaces
on the (embedding) line with slope d = 2 are scaling invariant.

In general, following [8], for a polygonal domain Ω with boundary ∂Ω consisting of a
finite number of straight line segments meeting at vertices vj of interior angles αj , j =
1, · · · ,M , let us introduce the polar coordinates (r, θ) at the vertex vj so that the interior
of the wedge is given by 0 < θ < αj and set βj = π/αj , then near vj the solution u
behaves like

u(r, θ) = kjr
βj | ln r|mj sin(βjθ) + w,

where kj is a constant called the stress intensity factors, mj = 0 unless βj = 2, 3, · · · ,
and w ∈ H2(Ω) is a smooth function. Globally it is easy to see that for any ε > 0, u ∈
H1+minj βj−ε(Ω). In particular, u ∈ H3/2−ε(Ω) but u /∈ H2(Ω) for concave polygonal
domains.
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For a general elliptic equation

(5) − div(A∇u) = f in Ω,

the lack of regularity could also come from the discontinunity of the coefficients of A. See
the example designed by Kellogg [9] with discontinuous diffusion coefficients listed in the
end of this subsection.

When u ∈ H1+ε(Ω) with ε ∈ [0, 1], in view of the approximation theory, we cannot
expect the finite element approximation rate ‖u − uT ‖1,Ω better than hε if we insist on
quasi-uniform grids. To improve the convergence rate for small ε, the element size should
be adapted to the behavior of the solution. The element size in areas of the domain where
the solution is smooth can stay bounded well away from zero, and thus the maximal ele-
ment size h of a triangulation T is not a good measure of the approximation rate. For this
reason, N = #T the number of elements is used, which is also proportional to the number
of degree of freedom. Note that N = O(h−d) for quasi-uniform grids.

We include some typical examples below and refer to iFEM [5] for numerical evidence
that finite element methods based on uniform refined grids will not give optimal order of
convergence. A correctly adapted grid will recovery the optimal convergent order.

Outline Introduction Solve Refine/Coarsen

Lack of Regularity

However the regularity result does not hold in general.

Example (L-shaped Domain Problem)

Let Ω := (−1, 1)2\{[0, 1)×(−1, 0]} and the
solution u satisfies −∆u = 0, u|∂Ω = uD .
We choose uD such that the exact solution

u(r , θ) = r
2
3 sin(

2

3
θ).

0

FIGURE 1. Patches are similar

1

It is easy to see u ∈ Hs for s < 5/3. In views of the approximation
theory, we cannot expect approximation rate (in H1 norm) better
than h2/3 if we insist on the quasi-uniform grids.

(a) L-shape problem

Outline Introduction Solve Refine/Coarsen

Lack of Regularity

However the regularity result does not hold in general.

Example (Crack Problem)

Let Ω = {|x | + |y | < 1}\{0 ≤ x ≤
1, y = 0} and the solution u satisfies
−∆u = 1, u|∂Ω = uD . We choose uD such
that the exact solution is

u(r , θ) = r
1
2 sin

θ

2
− 1

4
r2.

Ω0 1−1

1

−1

1

It is easy to see u ∈ Hs for s < 3/2. In views of the approximation
theory, we cannot expect approximation rate (in H1 norm) better
than h1/2 if we insist on the quasi-uniform grids.

(b) Crack problem

Outline Introduction Solve Refine/Coarsen

Lack of Regularity

However the regularity result does not hold in general.

Example (Discontinuous Coefficients Problem)

Let Ω := (−1, 1)2 and consider the equa-
tion −∇ · (A(x)∇u) = 0, u|∂Ω = uD , where
A is piecewise constant: in the first and
third quadrants, A = a1I ; in the second and
fourth quadrants, A = a2I . The ratio a2/a1

could be very big.

0

a1

a1 a2

a2

FIGURE 1. Patches are similar

1

We can choose parameters such that u ∈ H1+δ with 0 < δ $ 1.
Again the approximation rate will deteriorate to hδ if we still us
quasi-uniform grids.

(c) Jump coefficients

FIGURE 5. Lack of regularity of elliptic equations

L-shape problem. Let Ω := (−1, 1)2\{[0, 1) × (−1, 0]} be a L-shaped domain with a
reentrant corner.

−∆u = 0, in Ω and u = g on ∂Ω,

We choose the Dirichlet boundary condition g such that the exact solution reads

u(r, θ) = r
2
3 sin(

2

3
θ),

in the polar coordinates.

Crack problem. Let Ω = {|x| + |y| < 1}\{0 ≤ x ≤ 1, y = 0} with a crack and the
solution u satisfies the Poisson equation

−∆u = f, in Ω and u = uD on ΓD,

where f = 1, ΓD = ∂Ω. We choose uD such that the exact solution u in the polar
coordinates is

u(r, θ) = r
1
2 sin

θ

2
− 1

4
r2.
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Jump coefficients problem. Consider the partial differential equation (5) with Ω = (−1, 1)2

and the coefficient matrix A is piecewise constant: in the first and third quadrants, A =
a1I; in the second and fourth quadrants, A = a2I . For f = 0, the exact solution in the
polar coordinates has been chosen to be u(r, θ) = rγµ(θ), where

µ(θ) =


cos
(
(π2 − σ)γ

)
cos
(
(θ − π

2 + ρ)γ
)

if 0 ≤ θ ≤ π
2 ,

cos (ργ) cos ((θ − π + σ)γ) if π
2 ≤ θ ≤ π,

cos (σγ) cos ((θ − π − ρ)γ) if π ≤ θ ≤ 3π
2 ,

cos
(
(π2 − ρ)γ

)
cos
(
(θ − 3π

2 − σ)γ
)

if 3π
2 ≤ θ ≤ 2π,

and the constants

γ = 0.1, ρ = π/4, σ = −14.9225565104455152,

and
a1 = 161.4476387975881, a2 = 1.

For this example, we see
u ∈ H1+γ(Ω).

One can construct more singular function by choosing arbitrary small γ; see Kellogg [9].

3. EQUIDISTRIBUTION

The equidistribution principle has been widely used in adaptive mesh refinements. But
a theoretical justification of this principle is very difficult to be made precise. One early
justification of this approach is due to Babuška and Rheinboldt [1] and they provide a
heuristic asymptotic analysis.

In this section, we will illustrate the equidistribution principle in a more elementary
fashion. Through our simple theoretical analysis, we will see the equidistribution is indeed
needed for optimal error control, but on the other hand, we will show optimal convergent
rate can still be maintained when equidistribution are much relaxed.

We shall consider a simple elliptic boundary value problem

(6) −∆u = f in Ω, u = 0 on ∂Ω,

where, for simplicity, we assume Ω is a polygon and is partitioned by a shape regular
conforming triangulation TN with N number of triangles. Let VN ⊂ H1

0 (Ω) be the corre-
sponding continuous piecewise linear finite element space associated with this triangula-
tion TN .

A finite element approximation of the above problem is to find uN ∈ VN such that

(7) a(uN , vN ) = (f, vN ) ∀vN ∈ VN ,
where

a(u, v) =

∫
Ω

∇u · ∇v dx, and (f, v) =

∫
Ω

fv dx.

For this problem, it is well known that for a fixed finite element space VN
(8) |u− uN |1,Ω = inf

vN∈VN
|u− vN |1,Ω.

We then present an H1 error estimate for linear triangular element interpolation in two
dimensions. We note that in two dimensions, the following two embeddings are both valid:

(9) W 2,1(Ω) ⊂W 1,2(Ω) ≡ H1(Ω) and W 2,1(Ω) ⊂ C(Ω̄).
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Given u ∈ W 2,1(Ω), let uI be the linear nodal value interpolant of u on TN . For any
triangle τ ∈ TN , thanks to (9) and the assumption that τ is shape-regular, we have

|u− uI |1,τ . |u|2,1,τ .
As a result,

|u− uI |21,Ω .
∑
τ∈TN

|u|22,1,τ .

To minimize the error, we can try to minimize the right hand side. By Cauchy-Schwarz
inequality,

|u|2,1,Ω =
∑
τ∈TN

|u|2,1,τ ≤ (
∑
τ∈TN

1)1/2(
∑
τ∈TN

|u|22,1,τ )1/2 = N1/2(
∑
τ∈TN

|u|22,1,τ )1/2.

Thus, we have the following lower bound:

(10) (
∑
τ∈TN

|u|22,1,τ )1/2 ≥ N−1/2|u|2,1,Ω.

The equality holds if and only if

(11) |u|2,1,τ =
1

N
|u|2,1,Ω.

The condition (11) is hard to be satisfied in general. But we can considerably relax this
condition to ensure the lower bound estimate (10) is still achieved asymptotically. The
relaxed condition is as follows:

(12) |u|2,1,τ ≤ κτ,N |u|2,1,Ω
and

(13)
∑
τ∈TN

κ2
τ,N ≤ c1N−1.

When the above two inequalities hold, we have

|u− uI |1,Ω . N−1/2|u|2,1,Ω.
In summary, we have the following theorem.

Theorem 3.1. If TN is a triangulation with at most N triangles and satisfying (12) and
(13), then

(14) |u− uN |1 ≤ |u− uI |1,Ω . N−1/2|u|2,1,Ω.
In the above analysis, we see how equidistribution principle plays an important role in

achieving asymptotically optimal accuracy for adaptive grids. We would like to further
elaborate that, in the current setting, equidistribution is indeed a sufficient condition for
optimal error, but by no means this has to be a necessary condition. Namely the equidis-
tribution principle can be severely violated but asymptoticly optimal error estimates can
still be maintained. For example, the following mild violation of this principle is certainly
acceptable:

(15) |u|2,1,τ ≤
c

N
|u|2,1,Ω.

In fact, this condition can be more significantly violated on a finitely many elements {τ}

(16) |u|2,1,τ ≤
c√
N
|u|2,1,Ω.
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It is easy to see if a bounded number of elements satisfy (16) and the rest satisfy (15), the
estimate (13) is satisfied and hence the optimal error estimate (14) is still valid.

As we can see that the condition (16) is a very serious violation of equidistribution
principle, nevertheless, as long as such violations do not occur on too many elements,
asymptotically optimal error estimates are still valid. This simple observation is important
from both theoretical and practical points of view. The marking strategy proposed by
Dörfler [7] may also be interpreted in this way in its relationship with equidistribution
principle.

As it turns out, rigorously speaking, we need a slightly stronger assumption on u
(namely smoother than W 2,1(Ω)), for example, u ∈ W 2,p(Ω) 1 for some p > 1. This
assumption is true for most practical domains; see the discussion in the previous section.
More precisely, for any p > 1, any N , we have a constructive algorithm [2] to find a
shape-regular triangulation TN with O(N) elements such that

|u|2,1,τ ≤ c0N−1|u|2,p,Ω.
As a result, since |u− uT |1,Ω ≤ |u− uI |1,Ω, we have the following error estimate

(17) |u− uT |1,Ω . N−1/2|u|2,p,Ω,
which is asymptotically best possible for an isotropic triangulation with O(N) elements.
Recent works have shown that the estimate (17) can be practically realized [3, 4, 10, 11] by
using a posteriori error estimates and will be discussed next in Introduction to Convergence
Analysis of Adaptive Finite Element Methods.
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