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In this note, we introduce the convergence analysis of adaptive finite element methods
(AFEMs) for the Poisson equation and refer to Nochetto, Siebert, and Veeser [10] for a
comprehensive overview of the theory behind adaptive finite element methods.

1. RESIDUAL TYPE A POSTERIORI ERROR ESTIMATE

For the sake of clarity, we consider the Poisson equation with homogeneous Dirichlet
boundary conditions:

(1) −∆u = f in Ω, u = 0 on ∂Ω.

Let T be a shape-regular triangulation of Ω, and VT ⊂ H1
0 (Ω) be the linear finite

element space based on T . The linear finite element method for (1) is to find uT ∈ VT
such that

(2) (∇uT ,∇vT ) = (f, vT ), for all vT ∈ VT .
Here, we assume f ∈ L2(Ω), and (·, ·) denotes the L2-inner product.

When the solution u ∈ H2(Ω), we have the a priori error analysis:

|u− uT |1,Ω . hT ‖u‖2,Ω.
However, such optimal convergence order may not hold when u is not in H2(Ω). In this
section, we derive a residual type a posteriori error estimate of the error |u− uT |1,Ω.

The H1-norm of the error and the residual are connected through the differential oper-
ator and for the Poisson equation, which is the identity:

(3) |u− uT |1 = ‖ −∆(u− uT )‖−1 = sup
w∈H1

0 (Ω)

a(u− uT , w)

|w|1
,

where a(u, v) = (∇u,∇v) is the bilinear form associated with the Poisson equation. The
term −∆u = f holds in L2, but element-wise ∆TuT = 0 for a linear function. We need
to understand it in the dual sense and provide a computable upper bound of the sup in (3).

1.1. A Local and Stable Quasi-Interpolation. To define a function in the linear finite
element space VT , we only need to assign values at interior vertices. The nodal interpola-
tion uI ∈ VT is defined as uI(xi) = u(xi) for u ∈ C(Ω̄), which is not well-defined for
u ∈ H1(Ω). For a vertex xi ∈ N (T ), recall that Ωi consists of all simplices sharing this
vertex, and for an element Ωτ = ∪xi∈τΩi. Instead of using nodal values of the function,
we can use its average over Ωi.

For an interior vertex xi, we define Aiu = |Ωi|−1
∫

Ωi
u(x) dx. To incorporate the

boundary condition, when xi ∈ ∂Ω, we define Aiu = 0. Define the averaged quasi-
interpolation ΠT : L1(Ω) 7→ VT by

ΠT u =
∑

xi∈N (T )

Ai(u)ϕi,

where ϕi is the hat function (the basis of linear finite element space) at vertex xi.
1
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Lemma 1.1. For u ∈ H1(Ωτ ), we have the error estimate

‖u−ΠT u‖0,τ . hτ |u|1,Ωτ .
Proof. For interior vertices, we use the average-type Poincaré inequality:

(4) ‖u−Aiu‖0,Ωi ≤ Chτ |u|1,Ωi ,
and for boundary vertices, we use Poincaré-Friedrichs since u|∂Ωi∩∂Ω = 0 and the Rd−1

Lebesgue measure of the set ∂Ωi ∩ ∂Ω is non-zero. The constant C in the inequality (4)
is independent of Ωi since the mesh is shape regular. Then we use the partition of unity∑d+1
i=1 ϕi = 1 restricted to one element τ to write∫

τ

|u−ΠT u|2 =

∫
τ

∣∣∣ d+1∑
i=1

(u−Aiu)ϕi

∣∣∣2 dx

.
d+1∑
i=1

∫
Ωi

|u−Aiu|2 dx

. hτ

d+1∑
i=1

∫
Ωi

|∇u|2 dx . h2
τ

∫
Ωτ

|∇u|2 dx.

�

Exercise 1.2. Prove that ΠT is stable in the L2-norm:

‖ΠT u‖0,τ . ‖u‖0,Ωτ .
Next, we prove that ΠT is stable in the H1 norm. Let us introduce another average

operator Qτ : the L2 projection to the piecewise constant function spaces on T :

(Qτu)|τ = |τ |−1

∫
τ

u(x) dx,

for each τ ∈ T .

Lemma 1.3. For u ∈ H1(Ωτ ), we have stability

|ΠT u|1,τ . |u|1,Ωτ .
Proof. Using the Poincaré inequality, it is easy to see

‖u−Qτu‖0,τ . hτ |u|1,τ .
We use the inverse inequality and the first-order approximation property of Qτ and ΠT to
obtain

|ΠT u|1,τ = |ΠT u−Aτu|1,τ
≤ h−1

τ ‖ΠT u−Qτu‖0,τ
≤ h−1

τ (‖u−ΠT u‖0,τ + ‖u−Qτu‖0,τ )

. |u|1,Ωτ .
�

Summing over each element and using the finite overlapping property due to the shape
regularity of the mesh, we obtain the stability and approximation property.

Lemma 1.4. For u ∈ H1
0 (Ω), the quasi-interpolant ΠT u satisfies the following properties:
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(1) L2 and H1-stable:

‖ΠT u‖ . ‖u‖, |ΠT u|1 . |u|1.
(2) ∑

τ∈T

(
‖h−1(u−ΠT u)‖20,τ + ‖∇(u−ΠT u)‖20,τ

)1/2
. |u|1,Ω.

1.2. Upper Bound. The equidistribution principle suggests equidistributing the quantity
|u|2,1,τ ; see Introduction to Adaptive Finite Element Methods. However, it is not com-
putable since u is unknown. One may want to approximate it by |uT |2,1,τ . For linear finite
element function uT , we have |uT |2,1,τ = 0, thus providing no information about |u|2,1,τ .

The derivative of the piecewise constant vector function∇uT will be delta distributions
on edges with magnitudes equal to the jump of ∇uT across the edge. In the continuous
level, ∆u ∈ L2(Ω) implies ∇u ∈ H(div; Ω), meaning ∇u · ne is continuous at an edge e
where ne is a unit normal vector of e. For the finite element approximation uT ∈ VT , the
normal derivative ∇uT · ne is not continuous, although the tangential derivative ∇uT · te
is. The discontinuity of the normal derivative across edges can be used to measure the error
∇u−∇uT .

In the following, we provide a rigorous justification and a posteriori error estimate for
the Poisson equation with homogeneous Dirichlet boundary condition below and refer to
[14] for general elliptic equations and mixed boundary conditions.

Before delving into technical details, we highlight the orthogonality arising from the
Galerkin projection.

Lemma 1.5. Let u be the solution of (1) and uT ∈ VT be the solution of (2). Then we
have the orthogonality

(5) (∇u−∇uT ,∇vT ) = 0 ∀vT ∈ VT .
Let ET denote the set of all interior edges. For each interior edge e ∈ ET , we fix a unit

normal vector ne. Let τ1 and τ2 be two triangles sharing the edge e. The jump of flux
across e is defined as

[∇uT · ne] = ∇uT · ne|τ1 −∇uT · ne|τ2 .
We define h as a piecewise constant function on T : for each element τ ∈ T ,

(6) h|τ = hτ := |τ |1/2.
We also define a piecewise constant function on ET as

(7) h|e = he := (hτ1 + hτ2)/2,

where e = τ1 ∩ τ2 is the common edge of two triangles τ1 and τ2.
We will use the trace theorem ‖v‖0,∂τ . ‖v‖1,τ and apply a scaling argument to obtain

(8) ‖v‖0,e . h−1/2
τ ‖v‖0,τ + h1/2

τ |v|1,τ .
The correct scaling of h can be obtained by choosing v = 1 and v = x in (8).

Theorem 1.6. For a given triangulation T , let uT be the linear finite element approxi-
mation of the solution u of the Poisson equation. Then there exists a constant C1 > 0
depending only on the shape regularity of T such that

(9) |u− uT |1 ≤ C1

(∑
τ∈T
‖hf‖20,τ +

∑
e∈ET

‖h1/2[∇uT · ne]‖20,e
)1/2

.

https://www.math.uci.edu/~chenlong/226/AFEMintroduction.pdf
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Proof. For any w ∈ H1
0 (Ω) and any wT ∈ VT , we have

a(u− uT , w)

= a(u− uT , w − wT )

=
∑
τ∈T

∫
τ

∇(u− uT ) · ∇(w − wT ) dx

=
∑
τ∈T

∫
τ

−∆(u− uT )(w − wT ) dx +
∑
τ∈T

∫
∂τ

∇(u− uT ) · n(w − wT ) dS

=
∑
τ∈T

∫
τ

f(w − wT ) dx +
∑
e∈Eh

∫
e

[∇uT · ne](w − wT ) dS

≤
∑
τ∈T
‖hf‖0,τ‖h−1(w − wT )‖0,τ +

∑
e∈Eh

‖h1/2[∇uT · ne]‖0,e‖h−1/2(w − wT )‖0,e

.

(∑
τ∈T
‖hf‖20,τ +

∑
e∈ET

‖h−1/2[∇uT · ne]‖20,e

)1/2

(∑
τ∈T
‖h−1(w − wT )‖20,τ + ‖∇(w − wT )‖20,τ

)1/2

.

In the last step, we have used the scaled trace theorem (8).
Now chose wT = ΠT w using the quasi-interpolation operator introduced in Lemma

1.4, we have

(10)

(∑
τ∈T
‖h−1(w − wT )‖20,τ + ‖∇(w − wT )‖20,τ

)1/2

. |w|1,Ω.

Then we end with

|u− uT |1 = sup
w∈H1

0 (Ω)

a(u− uT , w)

|w|1
.
(∑
τ∈T
‖hf‖20,τ +

∑
e∈ET

‖h1/2[∇uT · ne]‖20,e
)1/2

.

�

To guide the local refinement, we need an element-wise error indicator. For any τ ∈ T
and any vT ∈ VT , we define

(11) η(vT , τ) =

(
‖hf‖20,τ +

∑
e∈∂τ

‖h1/2[∇vT · ne]‖20,e

)1/2

.

For a subsetMT ⊆ T , we define

η(vT ,MT ) =
[∑

τ

η2(vT , τ)
]1/2

.

With these notation, the upper bound (9) can be simply written as

(12) |u− uT |1,Ω ≤ C1η(uT , T ).

Remark 1.7. The local version of the upper bound (12)

|u− uT |1,τ ≤ C1η(uT ,Ωτ )

does not hold in general as the orthogonality (5) only holds globally.
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1.3. Lower Bound. We shall derive a lower bound of the error estimator η through the
following exercises. The technique is developed by Verfürth [14] and is known as bubble
functions. Namely using bubble functions to embed constants into H1

0 (Ω).
Let u be the solution of the Poisson equation −∆u = f with homogeneous Dirichlet

boundary condition, and let uT be the linear finite element approximation of u based on a
shape-regular and conforming triangulation T .

Exercise 1.8. (1) For a triangle τ , we denote Vτ = {fτ ∈ L2(τ) | fτ = constant}
equipped with the L2 inner product. Let λi, i = 1, 2, 3 be the barycentric coor-
dinates of x ∈ τ , and let bτ = λ1λ2λ3 be the bubble function on τ . We define
Bτfτ = fτ bτ .

Prove that Bτ : Vτ 7→ V = H1
0 (Ω) is bounded in L2 and H1 norm:

‖Bτfτ‖0,τ = C‖fτ‖0,τ , and ‖∇(Bτfτ )‖0,τ . h−1
τ ‖fτ‖0,τ .

(2) Use (1) to prove that

‖hfτ‖0,τ . |u− uT |1,τ + ‖h(f − fτ )‖0,τ .

(3) For an interior edge e, we define Ve = {ge ∈ L2(e) | ge = constant}. Suppose e
has endpoints xi and xj , we define be = λiλj and Be : Ve 7→ V by Bege = gebe.

Let Ωe denote the domaine formed by two triangles sharing e. Prove that
(a) ‖ge‖0,e = C‖Bege‖0,e,
(b) ‖Bege‖0,Ωe . h1/2

e ‖ge‖0,e and,

(c) ‖∇(Bege)‖0,Ωe . h−1/2
e ‖ge‖0,e.

(4) Use (3) to prove that

‖h1/2[∇uT · ne]‖0,e . ‖hf‖0,Ωe + |u− uT |1,Ωe .

(5) Use (1) and (4) to prove the lower bound of the error estimator. There exists a
constant C2 depending only on the shape regularity of the triangulation such that
for any piecewise constant approximation fτ of f ∈ L2,

C2η
2(uT , T ) ≤ |u− uT |21,Ω +

∑
τ∈Th

‖h(f − fτ )‖2τ .

2. CONVERGENCE

Standard adaptive finite element methods (AFEM) based on local mesh refinement can
be written as loops of the form

(13) SOLVE→ ESTIMATE→ MARK→ REFINE.

Starting from an initial triangulation T0, to obtain Tk+1 from Tk, we first solve the equation
to obtain uk based on Tk. The error is then estimated using uk and Tk, and this error
estimation is used to mark a set of triangles in Tk. Marked triangles, and possibly more
neighboring triangles, are then refined in such a way that the triangulation remains shape-
regular and conforming; see Section 3 for details.
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2.1. Algorithm. In the SOLVE step, we assume that the solutions of the finite-dimensional
problems can be efficiently solved to any desired accuracy. For multigrid methods on
graded bisection grids, we refer to [5].

The a posteriori error estimators play a crucial role in the ESTIMATE step. We have
provided one in the previous section and will discuss more in the next section.

The a posteriori error estimator is divided into local error indicators, which are then
used to make local modifications by refining the elements with large error indicators and
possibly coarsening the elements with small error indicators. The way we mark these
triangles influences the efficiency of the adaptive algorithm. The traditional maximum
marking strategy, proposed in the pioneering work of Babuška and Vogelius [1], is to mark
triangles τ∗ such that

η(uT , τ
∗) ≥ θmax

τ∈T
η(uT , τ), for some θ ∈ (0, 1).

Such a marking strategy is designed to evenly distribute the error. Based on our relaxation
of the equidistribution principle, we may leave some exceptional elements and focus on
the overall amount of error. This leads to the bulk criterion first proposed by Dörfler [6] in
order to prove the convergence of the local refinement strategy. With such a strategy, one
defines the marking setMT ⊂ T such that

(14) η2(uT ,MT ) ≥ θ η2(uT , T ), for some θ ∈ (0, 1).

We shall use the Dörfler marking strategy in the convergence proof.
After choosing a set of marked elements, we need to carefully design the rule for di-

viding the marked triangles such that the mesh obtained by this division rule remains con-
forming and shape-regular. We may need to refine more triangles to recover the conformity
of the triangulation and thus denote the set of refined triangles byMk. Additionally, we
aim to control the number of elements added to ensure the optimality of the refinement. To
this end, we shall use the newest vertex bisection detailed in Section 3.

Let us summarize AFEM in the following subroutine:

1 [uJ , TJ ] = AFEM (T1, f, tol, θ)
2 % AFEM compute an approximation uJ by adaptive finite element methods

3 % Input: T1 an initial triangulation; f data; tol <<1 tolerance; θ ∈ (0, 1)

4 % Output: uJ linear finite element approximation; TJ the finest mesh

5 η = 1, k = 0;

6 while η ≥ tol
7 k = k + 1;

8 SOLVE Poisson equation on Tk to get the solution uk;

9 ESTIMATE the error by η = η(uk, Tk);
10 MARK a set Mk ⊂ Tk with minimum number such that

11 η2(uk,Mk) ≥ θ η2(uk, Tk);
12 REFINE τ ∈Mk to get a conforming triangulation Tk+1;

13 end

14 uJ = uk; TJ = Tk;

2.2. Contraction of the error estimator. By the orthogonality (5), one can easily con-
clude that the error is non-increasing, i.e.,

|u− uk+1|1 ≤ |u− uk|1.
Equality could hold, i.e., uk+1 = uk, if the refinement did not introduce interior nodes for
triangles and edges; see Examples 3.6 and 3.7 in [9]. A closer look reveals that when the
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solution does not change, the error estimator η will be reduced due to the change in mesh
size and the Dörfler marking strategy.

Lemma 2.1. Given θ ∈ (0, 1), let Tk+1 be a conforming and shape-regular triangulation
refined from a conforming and shape-regular triangulation Tk using the Dörfler marking
strategy (14). Let uk be the solution of (2) in Vk. Then

(15) η2(uk, Tk+1) ≤ ρ η2(uk, Tk)

for some ρ ∈ (0, 1) depending only on the shape regularity of Tk and the parameter θ used
in the Dörfler marking strategy.

Proof. We study in detail the change in the error estimator due to the bisection of a triangle.
Suppose τ is bisected into τ1 and τ2. We first prove an element-wise contraction of the error
indicator: there exists a number ρ̄ ∈ (0, 1) depending only on the shape regularity of Tk
such that

(16) η2(uk, τ1) + η2(uk, τ2) ≤ ρ̄ η2(uk, τ).

To distinguish between the different mesh size functions, we use hk+1 and hk to denote
the mesh size function defined on Tk and Tk+1, respectively. Thanks to our definition,
h2
k+1,τi

= |τi| = 1/2|τ | = 1/2h2
k,τ . The part involving the element residual is reduced

by one half:

‖hk+1f‖2τ1 + ‖hk+1f‖2τ2 =
1

2
‖hkf‖2τ .

Regarding the jump of gradient on the edges, an important observation is that [∇uk·ne] = 0
for the newly created edge inside τ . For other edges on the boundary of τ , he is reduced
by a factor due to the definition of he, while the jump [∇uk · ne] remains unchanged as a
constant on the coarse mesh. So

∑
e∈∂τ ‖h1/2[∇vT · ne]‖20,e is also reduced by a factor

strictly less than one.
Since not all elements are refined, Dörfler marking ensures that a portion of the error

estimator is reduced, which is sufficient. Recall thatMk ⊆ Tk is the marked set. We may
need to refine more triangles to recover the conformity of the triangulation, and thus denote
the set of refined triangles byMk. SinceMk ⊆Mk, we have

η2(uk,Mk) ≥ η2(uk,Mk) ≥ θη2(uk, Tk).

We use the notationMk+1 ⊆ Tk+1 to denote the set of triangles obtained by refinement
of those inMk. Then Tk\Mk = Tk+1\Mk+1 are the untouched triangles. We then have

η2(uk, Tk+1) = η2(uk, Tk+1\Mk+1) + η2(uk,Mk+1)

≤ η2(uk, Tk\Mk) + ρ̄ η2(uk,Mk)

= η2(uk, Tk)− (1− ρ̄) η2(uk,Mk)

≤ η2(uk, Tk)− θ(1− ρ̄) η2(uk, Tk)

=
[
1− θ(1− ρ̄)

]
η2(uk, Tk).

We obtain (15) with ρ = 1− θ(1− ρ̄) ∈ (0, 1). �

2.3. Contraction of the sum of error and error estimator. We shall prove the conver-
gence of AFEM by showing the contraction of the total error between two levels. There
exists a positive constant α and a constant δ ∈ (0, 1) such that for all k ≥ 0,

(17) |u− uk+1|21 + αη2(uk+1, Tk+1) ≤ δ
[
|u− uk|21 + αη2(uk, Tk)

]
.
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Recall that we have

|u− uk+1|21 ≤ |u− uk|21, η2(uk, Tk+1) ≤ ρ η2(uk, Tk).

To prove (17), we shall explore more relation between the error and the error estimator in
consecutive levels Tk and Tk+1.

Lemma 2.2. Given a θ ∈ (0, 1), let Tk+1 be a conforming and shape regular triangula-
tion which is refined from a conforming and shape regular triangulation Tk using Dörfler
marking strategy (14). Let uk+1 and uk be solutions of (2) in Vk+1 and Vk, respectively.
Then we have

(1) orthogonality:

|u− uk+1|21 = |u− uk|21 − |uk+1 − uk|21;

(2) upper bound:
|u− uk|21 ≤ C1η

2(uk, Tk)

for some constant C1 depending only on the shape regularity of T ;

(3) continuity of the error estimator: for any ε > 0, there exists a constant Cε such
that

η2(uk+1, Tk+1) ≤ (1 + ε)η2(uk, Tk+1) + Cε|uk+1 − uk|21;

(4) contraction of the error estimator:

η2(uk+1, Tk+1) ≤ ρ(1 + ε) η2(uk, Tk) + Cε|uk+1 − uk|21
for ρ ∈ (0, 1) in Lemma 2.1.

Proof. (1) is straightforward since uk+1 is the H1 projection and uk+1 − uk ∈ Vk+1 due
to the nestedness of Tk and Tk+1. (2) has been proven in the previous section.

Now let’s prove (3). The part containing the element-wise residual ‖hf‖ remains un-
changed since we do not alter the triangulation. For each e ∈ ET , let τ ∈ T such that
e ∈ ∂τ . From the triangle inequality and the fact that∇(uk+1−uk) is piecewise constant,
we have:

‖h1/2[∇uk+1 · ne]‖0,e ≤ ‖h1/2[∇uk · ne]‖0,e + ‖h1/2[∇(uk+1 − uk) · ne]‖0,e
≤ ‖h1/2[∇uk · ne]‖0,e + C|uk+1 − uk|1,τ .

Squaring both sides, applying Young’s inequality 2ab ≤ εa2 + ε−1b2, and summing over
all edges yields the desired inequality. (4) is a combination of (3) and Lemma 2.1. �

We are now ready to prove the contraction result. We exploit the negative term arising
from the orthogonality of the error to offset the positive term resulting from the reduction
of the error estimator.

Theorem 2.3. Given a θ ∈ (0, 1), let Tk+1 be a conforming and shape regular triangula-
tion which is refined from a conforming and shape regular triangulation Tk using Dörfler
marking strategy (14). Let uk+1 and uk be solutions of (2) in Vk+1 and Vk, respectively.
Then there exist constants δ ∈ (0, 1) and α depending only on θ and the shape regularity
of Tk such that

(18) |u− uk+1|21 + αη2(uk+1, Tk+1) ≤ δ
[
|u− uk|21 + αη2(uk, Tk)

]
.
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Proof. Let ρ ∈ (0, 1) be the constant in Lemma 2.1. Since ρ ∈ (0, 1), we can choose
ε ∈ (0, 1) small enough such that ρ(1+ ε) < 1. Let α = C−1

ε . Adding the two inequalities
in Lemma 2.2 (1) and (4) with weight α will imply

|u− uk+1|21 + αη2(uk+1, Tk+1) ≤ |u− uk|21 + α(1 + ε)ρ η2(uk, Tk).

Let δ be a number in (0, 1) whose value will be clear in a moment. We then have

|u− uk+1|21 + αη2(uk+1, Tk+1)

≤ δ|u− uk|21 + (1− δ)|u− uk|21 + αρ(1 + ε) η2(uk, Tk)

≤ δ|u− uk|21 + (1− δ)C1η
2(uk, Tk) + αρ(1 + ε) η2(uk, Tk)

≤ δ
[
|u− uk|21 +

(1− δ)C1 + αρ(1 + ε)

δ
η2(uk, Tk)

]
.

This suggests us to choose δ such that

α =
(1− δ)C1 + αρ(1 + ε)

δ
.

Namely

(19) δ =
C1 + αρ(1 + ε)

C1 + α
.

Recall that we choose ε such that ρ(1 + ε) < 1, so δ ∈ (0, 1). The desired result (18) then
follows. �

As a consequence of the contraction of the total error between two levels, we can prove
that AFEM will terminate in a finite number of steps for a given tolerance tol and yield
a convergent approximation uJ based on an adaptive grid TJ . For a deeper analysis of
complexity, readers are encouraged to refer to [13, 4].

Theorem 2.4. Let uk and Tk be the solution and triangulation obtained in the k-th loop in
the algorithm AFEM, then there exist constants δ ∈ (0, 1) and α depending only on θ and
the shape regularity of T0 such that

(20) |u− uk|21 + αη2(uk, Tk) ≤ C0δ
k,

and thus the algorithm AFEM will terminate in finite steps.

2.4. Alternative convergence proof. We follow [7] to present an alternative convergence
proof of the error estimator.

Theorem 2.5. Let uk and Tk be the solution and triangulation obtained in the k-th loop
in the algorithm AFEM. Then there exist constants 0 < % < 1 and C > 0 such that: for all
positive integers `,m

(21) η2(u`+m, T`+m) ≤ C%mη2(u`, T`).

Proof. We recall the contraction of the error estimator

(22) η2(ui+1, Ti+1) ≤ ρη2(ui, Ti) + Cθ|ui+1 − ui|21.
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Therefore, for any N ≥ l + 1, it holds
N∑

i=`+1

η2(ui, Ti) ≤
N∑

i=`+1

[
ρη2(ui−1, Ti−1) + Cθ|ui − ui−1|21

]
≤ ρ

N−1∑
i=`

η2(ui, Ti) + Cθ|u− u`|21

≤ ρ
N−1∑
i=`

η2(ui, Ti) + CθC
2
1η

2(u`, T`).

Here, in the second inequality, we have used the orthogonality to get
N∑

i=`+1

|ui − ui−1|21 = |uN − u`|21 = |u− u`|21 − |u− uN |21 ≤ |u− u`|21.

Then, rearranging the terms and with the arbitrary choice of N , we obtain
∞∑

i=`+1

η2(ui, Ti) ≤ C̃η2(u`, T`) for all positive integer l,

where C̃ = (ρ+CθC
2
1 )/(1−ρ). Intuitively we have a positive sequence {ai}with property

∞∑
i=`+1

ai ≤ C̃a`, then ai is geometric decay.

To prove that, we first show the contraction

(1 + C̃−1)

∞∑
i=`+1

η2(ui, Ti) ≤
∞∑

i=`+1

η2(ui, Ti) + η2(u`, T`) =

∞∑
i=`

η2(ui, Ti).

Repeat m times, we have

η2(u`+m, T`+m) ≤
∞∑

i=`+m

η2(ui, Ti) ≤ (1 + C̃−1)−m
∞∑
i=`

η2(ui, Ti)

≤ (1 + C̃)(1 + C̃−1)−mη2(u`, T`).
Let C2

5 = 1 + C̃ and % = (1 + C̃−1)−1, then the desired result follows. �

3. NEWEST VERTEX BISECTION

In this section we shall give a brief introduction of the newest vertex bisection. We refer
to [8, 14] for detailed description of the newest vertex bisection refinement procedure and
especially [3] for the control of the number of elements added by the completion process.

We first recall two important properties of triangulations. A triangulation Th (also in-
dicated by mesh or grid) of Ω ⊂ R2 is a decomposition of Ω into a set of triangles. It is
called conforming if the intersection of any two triangles τ and τ ′ in Th either consists of
a common vertex xi, edge E or empty. An edge of a triangle is called non-conforming if
there is a vertex in the interior of that edge and that interior vertex is called hanging node.
See Fig. 3 (b) for an example of non-conforming triangles and hanging nodes. We would
like to keep the conformity of the triangulations.

A triangulation Th is shape regular if

(23) max
τ∈Th

diam(τ)2

|τ | ≤ σ
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where diam(τ) is the diameter of τ and |τ | is the area of τ . A sequence of triangulation
{Tk, k = 0, 1, · · · } is called uniform shape regular if σ in (23) is independent with k.

The shape regularity of triangulations assures that angles of the triangulation remains
bounded away from 0 and π which is important to control the interpolation error in H1

norm and the condition number of the stiffness matrix. We also want to keep this property
of the triangulations.

After we marked a set of triangles to be refined, we need to carefully design the rule
for dividing the marked triangles such that the refined mesh is still conforming and shape
regular. Such refinement rules include red and green refinement [2], longest edge bisec-
tion [11] and newest vertex bisection [12]. We shall restrict ourself to the newest vertex
bisection method since it will produce nested finite element spaces and relatively easier to
generalize to high dimensions.

Given an initial shape regular triangulation T0 of Ω, we assign to each τ ∈ T0 exactly
one vertex called the newest vertex. The opposite edge of the newest vertex is called
refinement edge. One such initial labeling is to use the longest edge of each triangle (with
a tie breaking scheme for edges of equal length). The rule of the newest vertex bisection
includes:

(1) a triangle is divided to two new children triangles by connecting the newest vertex
to the midpoint of the refinement edge;

(2) the new vertex created at a midpoint of a refinement edge is assigned to be the
newest vertex of the children.

It is easy to verify that all the descendants of an original triangle fall into four similarity
classes (see Figure 1) and hence the angles are bounded away from 0 and π and all tri-
angulations refined from T0 using newest vertex bisection forms a shape regular class of
triangulations.

CHAPTER 1. CONVERGENCEOF ADAPTIVE FINITE ELEMENTMETHODS 10

Figure 1.1: Edges in bold case are bases

1 2 3

1 1

4 4

2 3 2 3

3 2

2 3

Figure 1.2: Four similarity classes of triangles generated by the newest vertex bisection

1.2 Preliminaries

In this section we shall present some preliminaries needed for the convergence analysis of the

adaptive finite element methods. We first discuss the newest vertex bisection which is the rule

we used to divide the triangles. We then present a quasi-interpolation operator which is crucial

to prove the upper bound of residual type a posteriori error estimator.

Newest vertex bisection

In this subsection we give a brief introduction of the newest vertex bisection and mainly concern

the number of elements added by the completion process. We refer to [31, 42] and [11] for

detailed description of the newest vertex bisection refinement procedure.

Given an initial shape regular triangulation T0 of Ω, it is possible to assign to each τ ∈ T0

exactly one vertex called peak or the newest vertex. The opposite edge of the peak is called base.

The rule of the newest vertex bisection includes: 1) a triangle is divided to two new children

triangles by connecting the peak to the midpoint of the base; 2) the new vertex created at a

midpoint of a base is assigned to be the peak of the children. Sewell [39] showed that all the

decendants of an original triangle fall into four similarity classes (see Figure 1.2) and hence the

angles are bounded away from 0 and π.

To generate a triangulation Tk+1 from previous one Tk, we first mark some of the triangles of

Tk according to some marking strategy and subdivide the marked triangles using newest vertex

bisection to get T ′
k+1. The new partition T ′

k+1 might have hanging nodes. We make additional

subdivisions to eliminate the hanging nodes i.e. complete the new partition. The completion is

made by dividing triangles using the designated peaks and base points. Tk+1 will be defined as

FIGURE 1. Four similarity classes of triangles generated by the newest
vertex bisection

The triangulation obtained by the newest vertex might have hanging nodes. We have to
make additional subdivisions to eliminate the hanging nodes, i.e., complete the new parti-
tion. The completion should also follow the bisection rules to keep the shape regularity;
see Figures below for an illustration of the completion procedure.

Let M denotes the set of triangles to be refined. A standard iterative algorithm of the
completion is the following.

1 function T = completion(T,M)

2 while M is not empty

3 Update T by bisecting each triangle in M;

4 Let now M be the set of non-conforming triangles.

5 end

We need to show the while loop will terminate. For two dimensional triangulation, this is
easy. Let us denote the uniform bisection of T as D(T ), i.e., every triangle is bisected into
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(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

(a) Bisect a triangle

0 1 2 3 4

0

1

2

(b) Completion

FIGURE 2. Newest vertex bisection

1

(a) An initial triangulation

(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

(a) Bisect a triangle

0 1 2 3 4

0

1

2

(b) Completion

FIGURE 2. Newest vertex bisection

1

(b) Refine two triangles producing a
non-conforming edge

(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

(a) Bisect a triangle

0 1 2 3 4

0

1

2

(b) Completion

FIGURE 2. Newest vertex bisection

1

(c) Refine one triangle to obtain a con-
forming triangulation

FIGURE 2. An illustration of the completion procedure. The dot indi-
cates the refinement edge of each triangle.

two. Note thatD(T ) may not be conforming; see Fig 3 (b). ButD2(T ), which corresponds
to bisecting every triangle twice, is always conforming since middle points of all edges are
added from T toD2(T ). We consider the completion procedure as a procedure of splitting
edges. The edges split during the completion procedure is a subset of the edge set of T
which is finite and thus the completion will terminate.

If we ask more than the termination of the completion process and want to control the
number of elements refined due to the completion, we have to carefully assign the newest
vertex for the initial partition T0. Binev, Dahmen and DeVore [3] show that if M is the
collection of all triangles marked in going from a conforming divisible triangulation T0 to
Tk then

(24) #Tk ≤ #T0 + C#M,

where #A denotes the cardinality of the set A. That is the number of addition triangles
refined in the completion procedure is bounded by the number of marked triangles in the
l1 sense. The inequality (24) cannot be true in the l∞ sense. Refine one marked triangle
could trigger a sequence of triangles with length equals to its generation in the completion
procedure; see the following figure. The inequality (24) is crucial for the optimality of
adaptive finite element methods; see [3, 4].

We conclude this section by a remark that the bisection or the regular refinement in
three and higher dimensions is much more involved. The theoretical proof of the shape
regularity, the termination of completion, and the control of number of elements added in
the completion requires more careful combinatory study; see [10].
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