
Math 3D                                                                               Solution 
Quiz 2 

1) (6 pts) Find an explicit solution for the initial value problem 2 dyx y xy
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Now isolate y.  First, let 3 2 1C C C= − . 
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3 0Ce > , but when we remove the absolute value around y, we can now get positive or 
negative values.  0y =  is a solution of the differential equation, so our constant can be 
any real number, including 0.  We'll call this final constant C . 
 
Finally note that this solution is only valid on intervals where it is continuous, so (for 
solutions other than the trivial solution) the solution is only valid on either ( ), 0−∞  or 

( )0,∞ .  This final restriction allows us to remove the absolute value bars around x  term, 

leaving us with ( ) 1 x
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= − =  so C e= − .  Thus 
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=  is the explicit solution on ( )0,∞ . 

 

2) (4 pts) Find the critical points and draw the phase portrait 3dy y y
dx

= − .  Classify each 

critical point as stable, unstable or semi-stable. 
 

( ) ( ) ( )3 2 1 1 1dy y y y y y y y
dx

= − = − = + −  so the critical points are 0y = , 1y =  and 

1y = − .  We break the real line at these critical points, resulting in the intervals 
( ), 1−∞ − , ( )1, 0− , ( )0,1  and ( )1,∞ ; choosing a value from each interval, we find: 
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 so 1−  and 1  are unstable (repellers), and 0 is stable (an attracter). 

1 

-1 

0


