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Abstract. In this paper we formulate a conjecture about the unitary dual
of the metaplectic group. We prove this conjecture for the case of Mp(4,R).
The result is a strengthening, for this case, of the following result by the third
author: any unitary representation of a real reductive Lie group with strongly
regular infinitesimal character can be obtained by cohomological induction
from a one dimensional representation. Strongly regular representations are
those whose infinitesimal character is at least as regular as that of the trivial
representation. We are extending the result to representations with omega-
regular infinitesimal character: those whose infinitesimal character is at least
as regular as that of the oscillator representation. The proof relies heavily
on Parthasarathy’s Dirac operator inequality. In one exception we explicitly
calculate the signature of an intertwining operator to establish nonunitarity.
Some of the results on intertwining operators presented in section 5.2 are joint
work of Dan M. Barbasch and the first author.

1. Introduction

This paper is based on a presentation by the third author at the 13th Confer-
ence of African American Researchers in the Mathematical Sciences (CAARMS13).
The presentation was intentionally expository, aimed at non-experts in the field of
representation theory. With this in mind, an introductory survey of the funda-
mental concepts underlying this work was provided. A brief extract of the original
presentation appears in the appendix. We have limited the introductory remarks to
a discussion about SL(2,R), as some results relative to this group are paramount
for understanding the main ideas of the paper.
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1.1. Classification of representations. Let G be a real reductive Lie group.
Recall that in [15], Vogan gave a classification of all admissible irreducible repre-
sentations of G. In fact, he gave a parametrization of all such representations
containing any given irreducible representation of K as a lowest K-type. Here K
is the maximal compact subgroup of G. More precisely, we have the following

Proposition 1. (See [15, 16] for definitions and details). To a reductive Lie
group G, a maximal compact subgroup K of G, and an irreducible representa-
tion µ of K, we can attach a subgroup La = La(µ) of G, a parabolic subalgebra
qa= la+ua⊆ g and an La ∩K representation µLa such that there is a bijection

Rqa :
{

(la,La∩K) modules
with lowest (La∩K)-type µLa

}
7−→

{
(g,K) modules

with lowest K-type µ

}
.

Here g and la are the complexified Lie algebras of G and La, respectively. (We
use similar notation for other groups and Lie algebras, and use the subscript 0 to
denote real Lie algebras.)

This construction is called cohomological parabolic induction. We call Rq the
cohomological induction functor. The representations on the left-hand side are
minimal principal representations of the subgroup La. Proposition 1 essentially
reduces the classification of irreducible admissible representations of G to minimal
principal series of certain subgroups. If µ is the lowest K-type of a principal series
representation of G then we have La (µ) = G, and there is no reduction.

In the case ofG = SL(2,R) andK = S1, La (n) = K for |n| ≥ 2 and La (n) = G
for |n| ≤ 1. Here we have identified the irreducible representations of S1 with
integers in the usual way.

For unitary representations, we would like to have a statement similar to Propo-
sition 1. In other words, we would like to have some way of classifying all the unitary
representations containing a certain lowest K-type µ. This is known to be possible
in some cases; in general, we have the following conjecture (see [13]).

Conjecture 1. (See [13]) To each representation µ of K, we can attach a
subgroup Lu, a parabolic subalgebra qu and a representation µLu of Lu ∩K such
that there is a bijection

Rqu
:
{

unitary (lu,Lu ∩K) modules
with lowest (Lu ∩K)-type µLu

}
7−→

{
unitary (g,K) modules
with lowest K -type µ

}
.

In principle, µLu is a representation for which there is no such reduction to a
representation of a smaller group. However, in the case of SL(2,R), even though
we can realize the discrete series as cohomologically induced from one dimensional
representations of the group T , it fits best into the general conjecture to make
Lu (n) = T for |n| > 2 and Lu (n) = G for |n| ≤ 2. This suggests that the non-
reducing K-types are 0, ±1 and ±2. We want to have a bijection like this for any
real reductive Lie group.

Remark 1.1. As in this case, in general qu (µ) ) qa (µ).

We will now provide examples of unitary representations that can be con-
structed from, in some sense, “smaller”, or easier to understand representations
of proper subgroups of G.
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1.2. The Aq representations. In this section we describe a family of uni-
tary representations that are cohomologically induced from one-dimensional repre-
sentations of a subgroup. We focus on representation that satisfy some regularity
condition on the infinitesimal character. In [12], the strongly regular case was con-
sidered (see 1.2.1). In the present paper we consider a weakening of the regularity
assumption for representations of the metaplectic groups Mp (2n,R), n = 1, 2.

1.2.1. Strongly regular case. Let G be reductive. Let h = t + a be a maximally
compact Cartan subalgebra of g, with t a Cartan subalgebra of k. For a weight
φ ∈ h∗, choose a positive root system from the set of roots positive on φ:

∆+ (φ) ⊆ {α ∈ ∆ (g, t) | 〈φ, α〉 ≥ 0} .
Then define

ρφ = ρ
(
∆+ (φ)

)
=

1
2

∑
α∈∆+(φ)

α.

Definition 1.2. Suppose φ ∈ h∗ is real. We say that φ is strongly regular if
〈φ− ρφ, α〉 ≥ 0 for all α ∈ ∆+ (φ) .

1.2.2. Aq (λ) representations. Recall that a theta stable parabolic subalgebra
q = l+u of g is defined as the sum of the nonnegative root spaces for ad (ξ) where ξ
is an element of it0. The Levi subalgebra l is the zero eigenspace and contains t. It
is a reductive subalgebra of g. The sum of the positive eigenspaces is the nilradical
u of q. Let L be the Levi subgroup of G corresponding to l. Then l0 is the Lie
algebra of L. We construct a representation of G as follows.

Definition 1.3. For every one-dimensional representation Cλ of L satisfying

(1.1) 〈λ|t, α〉 ≥ 0 ∀α ∈ ∆(u)

we define Aq (λ) := Rq(Cλ).

Here ∆(u) = ∆(u, t). In general, for any t-invariant subspace s ⊆ g, we write
∆(s) = ∆(s, t) for the set of weights of t in s counted with multiplicities.

Remark 1.4. All Aq (λ) representations constructed this way are nonzero,
irreducible and unitary.

Proposition 2. [12] Suppose G is a real reductive Lie group and X is an
irreducible Hermitian (g,K) module with a real, strongly regular infinitesimal char-
acter. Then X is unitary if and only if there is a parabolic subalgebra q of g and a
one-dimensional representation Cλ of L satisfying (1.1) and such that

X ' Aq (Cλ) .

1.2.3. The omega-regular case and the Aq(Ω) representations of Mp(2n). Let
G = Mp (2n), the connected double cover of the group Sp (2n,R). Then g =
sp (2n). Representations of G may be divided into those which factor through
Sp(2n,R) (“nongenuine” ones), and those that do not, the “genuine” representa-
tions. The nongenuine representations of G are essentially the representations of
the linear group; in particular, a nongenuine representation of G is unitary if and
only if the corresponding representation of Sp(2n,R) is.
In order to build a genuine Aq(λ) representation of G, we need to start with a
genuine one-dimensional representation of the Levi subgroup L corresponding to
the Levi factor l of a theta stable parabolic subalgebra of g. Such subgroups are
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(quotients of) products of factors isomorphic to smaller metaplectic groups and
double covers of U(p, q)’s. Notice that the metaplectic group does not have any
genuine one-dimensional representation, hence there are no Aq(λ) representations
for such q. We extend our definition to allow the oscillator representation ω, a
minimal genuine unitary representation of Mp(2m) on such factors. The infinites-
imal character of the oscillator representation is not strongly regular, but satisfies
a slightly weaker condition, which we call “omega-regular” (see Definition 2.1 for a
precise definition). If we apply cohomological induction to representations of L of
the form

(1.2) Ω = Cλ ⊗ ω

then, by a construction analogous to the one of the Aq(λ) representations, we
obtain genuine irreducible unitary representations of G with ω-regular infinitesimal
character, which we call Aq(Ω) representations (see Definition 2.4).

If we hope to list all unitary ω-regular representations of G, we must extend
our definition of Aq(Ω) representations to the nongenuine case as well, since the
representations IP (δ+, u) of SL(2,R) with 1

2 < u < 1 (“complementary series”) in
Table 1 (6.8) are ω-regular and unitary, but not Aq(λ) modules. We define a family
of nongenuine ω-regular unitary representations of G, which we call Meta-Aq(λ)
representations, by allowing complementary series on any Mp(2) factor of L, and
relaxing condition 1.1 somewhat (see Definition 2.5).

Conjecture 2. Let G be Mp (2n) and let X be a genuine irreducible repre-
sentation of G with real infinitesimal character. Then X is ω-regular and unitary
if and only if there are q, L and a genuine representation Ω of L as above such that

X ' Aq (Ω) .

IfX is nongenuine, thenX is ω-regular and unitary if and only ifX is a Meta-Aq (λ)
representation.

The main result of this paper is a proof of the conjecture for Mp (2) and Mp (4)
(see Conjecture 3 and Theorem 2.8). The case of Mp (2n) with n ≥ 3 has many
additional interesting and complicating features and will appear in a future paper.

The full unitary duals of Mp(2) and Sp(4,R) are well known (c.f. [4] and [10]);
some basic results are reported for the sake of completeness. The most innovative
part of this paper regards genuine representations of Mp(4). The proof of the con-
jecture in this case requires more elaborate techniques. A synopsis follows. First,
we determine the set of genuine representations of K which are lowest K-types
of Aq (Ω) representations; for every representation of K in this list, we establish
that there is a unique unitary irreducible representation of Mp(4) with that lowest
K-type. Then, we consider genuine representations of K which are not lowest K-
types of Aq (Ω) representations, and we establish that any ω-regular representation
of Mp(4) containing those K-types is nonunitary. It turns out that Parthasarathy’s
Dirac operator inequality can be used to prove nonunitary for all but two repre-
sentations. The last section of the paper is dedicated to proving that these two
remaining K-types cannot occur in any unitary representation. The proof is based
on an explicit calculation of the signature of the intertwining operator. Some results
about intertwining operators are included in Section 5.2.

The paper is organized as follows. In Section 2, we define our notation and
state some preliminary facts and results. Sections 3, 4 and 5 contain the proof of
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Conjecture 2 forMp (2) andMp (4). Section 3 is dedicated toMp(2), the remaining
sections deal with Mp(4).

The authors thank Jeffrey Adams and David Vogan for posing the problem,
and for their help and support along the way. They would also like to thank
Dan M. Barbasch for his invaluable help in developing the theory of intertwining
operators, and for his generosity with both his time and his ideas. The third author
wishes to thank Donald R. King, Alfred G. Noel and William Massey, organizers
of the CAARMS13 conference, for their invitation to speak at the conference and
to submit this paper to these Proceedings.

2. Preliminaries

2.1. Setup. Let G = Mp(2n) = Mp(2n,R) be the metaplectic group, i. e.,
the connected double cover of the symplectic group Sp(2n,R), and denote by

(2.1) pr : Mp(2n) → Sp(2n,R)

the covering map. Fix a Cartan decomposition g = k + p of g = sp(2n,C), and let
θ be the corresponding Cartan involution. Let q = l + u be a theta stable parabolic
subalgebra of g = sp(2n,C). Then the Levi subgroup L of Mp(2n) corresponding
to l is the inverse image under pr of a Levi subgroup of Sp(2n,R) of the form

(2.2)
r∏

i=1

U(pi, qi)× Sp(2m,R).

There is a surjection

(2.3)
r∏

i=1

Ũ(pi, qi)×Mp(2m) → L,

where Ũ(pi, qi) denotes the connected “square root of the determinant” cover of
U(pi, qi),

(2.4) Ũ(pi, qi) '
{
(g, z) ∈ U(pi, qi)× C× : z2 = det(g)

}
.

An irreducible admissible representation of L may be given by a representation

(2.5)
r⊗

i=1

πi ⊗ σ,

where πi is an irreducible admissible representation of Ũ(pi, qi) for each i, and σ is
an irreducible admissible representation ofMp(2m). In order for this tensor product
to descend to a representation of L, we must have that either all representations in
the product are genuine, i. e., nontrivial on the kernel of the covering map, or all
representations are nongenuine. In the first case, the representation σ of Mp(2m)
will then be genuine. In the second case, it will factor through Sp(2m,R). With
this in mind, we will often identify L with the product in (2.3), and a representation
of L with a representation of the product.

In most cases, the representation π =
r⊗

i=1

πi we consider will be one-dimensional,

and we denote it by Cλ. The genuine representations of Mp(2m) we consider will
be the four oscillator representations ω±o , ω±e . Here ω+ = ω+

e +ω+
o denotes the holo-

morphic oscillator representation which is a sum of the even and odd constituents,
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and ω− = ω−e +ω−o is its contragredient, the antiholomorphic oscillator representa-
tion of Mp(2m). We will often refer to any of these four irreducible representations
as “an oscillator representation of Mp(2m)”.

The nongenuine representations of Mp(2m) will be the trivial representation C
or, in the case of Mp(2), the unique spherical constituents of the spherical principal
series representations Jν with infinitesimal character ν satisfying 1

2 ≤ ν ≤ 1 (the
“complementary series representations”). Recall (see Table 1) that these represen-
tations are unitary, and J1 is the trivial representation of Mp(2).

Let t be a fundamental Cartan subalgebra of g. Recall that t is also a Cartan
subalgebra for k, the complexified Lie algebra of K ' Ũ(n), a maximal compact
subgroup of G. Let ∆(g, t) ⊆ it

∗
0 be the set of roots of t in g. (Here, as everywhere

else in the paper, we use the subscript 0 to denote real Lie algebras.) With respect
to a standard parametrization, we can identify elements of it∗0 with n-tuples of real
numbers. With this identification,

(2.6) ∆(g, t) = {±2ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : 1 ≤ i < j ≤ n} ,

where ei is the n-tuple with 1 in the ith position, and 0 everywhere else. Then the
compact roots are

(2.7) ∆k = ∆(k, t) = {±(ei − ej) : 1 ≤ i < j ≤ n} .

We fix a system of positive compact roots

(2.8) ∆+
k = {ei − ej : 1 ≤ i < j ≤ n}

and write

(2.9) ρc =
(
n− 1

2
,
n− 3

2
, ...,

−n+ 1
2

)
,

one half the sum of the roots in ∆+
k . We identify K-types, i. e., irreducible rep-

resentations of K, with their highest weights which will be given by n-tuples of
weakly decreasing integers (if nongenuine) or elements of Z + 1

2 (if genuine). The
lowest K-types (in the sense of Vogan [16]) of ω+

e , ω
+
o , ω

−
e , and ω−o are(

1
2
,
1
2
, . . . ,

1
2

)
,(2.10) (

3
2
,
1
2
,
1
2
, . . . ,

1
2

)
,(2.11) (

−1
2
,−1

2
, . . . ,−1

2

)
, and(2.12) (

−1
2
,−1

2
, . . . ,−1

2
,−3

2

)
(2.13)

respectively.
Using the Harish-Chandra map, we identify infinitesimal characters of admissi-

ble representations of G with (Weyl group orbits of) elements of t∗. Recall that the
Weyl group W (g, t) acts on t by permutations and sign changes. For example, the
infinitesimal character γω of any of the oscillator representations can be represented
by the element

(2.14)
(
n− 1

2
, n− 3

2
, . . . ,

3
2
,
1
2

)
;
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we will often abuse notation by writing

(2.15) γω =
(
n− 1

2
, n− 3

2
, . . . ,

3
2
,
1
2

)
.

We fix a non-degenerate G- and θ-invariant symmetric bilinear form < , >
on g0, and we use the same notation for its various restrictions, extensions, and
dualizations. In our parametrization of elements of t, this is the standard inner
product

(2.16) ((a1, . . . , an) , (b1, . . . , bn)) =
n∑

i=1

aibi.

2.2. Definitions and Conjecture.

Definition 2.1. Let γ ∈ it∗0. Choose a positive system ∆+ (γ) ⊆ ∆(g, t) such
that 〈α, γ〉 ≥ 0 for all α ∈ ∆+ (γ), and let γω be the representative of the infini-
tesimal character of the oscillator representation which is dominant with respect to
∆+ (γ). We call γ ω-regular if the following regularity condition is satisfied:

(2.17) 〈α, γ − γω〉 ≥ 0 ∀α ∈ ∆+ (γ) .

We say that a representation of G is ω-regular if its infinitesimal character is.

Remark 2.2. The definition of ω-regular infinitesimal character is similar to the
one of strongly regular infinitesimal character (c.f. [12]), but uses the infinitesimal
character γω of the oscillator representation instead of the infinitesimal character ρ
of the trivial representation. Note that every strongly regular infinitesimal character
is necessarily ω-regular. We will prove this result in the course of the proof of
proposition 3.

Example 2.3. In Mp(2), an infinitesimal character γ = (k) is ω-regular if k is
a real number such that |k| ≥ 1

2 ; it is strongly regular if |k| ≥ 1.
In Mp(4), an infinitesimal character γ = (a, b) is ω-regular if a and b are both
real, ||a| − |b|| ≥ 1, and min {|a|, |b|} ≥ 1

2 . It is strongly regular if, in addition,
min {|a|, |b|} ≥ 1.

We will focus on two families of ω-regular representations: the Aq(Ω) and the
Meta-Aq(λ) representations of G, which we define below. In both cases, q = l + q
is a theta stable parabolic subalgebra of g with

L =
r∏

i=1

Ũ(pi, qi)×Mp(2m).

We write ρ(u) for one half the sum of the roots of u.

Definition 2.4. An Aq(Ω) representation is a genuine representation of G
of the following form. Let Cλ be a genuine one-dimensional representation of[

r∏
i=1

Ũ(pi, qi)

]
and let ω be an oscillator representation of Mp(2m). Assume that

the representation Ω = Cλ ⊗ ω of L is in the good range for q, i. e., that the infini-
tesimal character γL of Ω is such that γL + ρ(u) is strictly dominant with respect
to the roots of u. We define

Aq (Ω) := Rq(Ω).

Rq denotes the right cohomological induction functor defined in [15] and [16].
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Definition 2.5. A Meta-Aq(λ) representation is a nongenuine representation
X of G of the following form. Let Cλ be a nongenuine one-dimensional repre-

sentation of

[
r∏

i=1

Ũ(pi, qi)

]
and let Jν be the spherical constituent of the spherical

principal series of Mp(2m) with infinitesimal character ν. If m 6= 1 then we take
ν = ρ so that Jν = Jρ is the trivial representation of Mp(2m); if m = 1 then require
that 1

2 ≤ ν ≤ 1, so that Jν is a complementary series of Mp(2) if 1
2 ≤ ν < 1 and is

the trivial representation if ν = 1. Assume that Cλ ⊗ Jν is in the good range for q.
We define

X := Rq(Cλ ⊗ Jν).

Remark 2.6. Every Aq(λ) representation ofMp(2n) in the good range is either
an Aq(Ω) or a Meta-Aq(λ) representation.
More explicitly, if X is a genuine Aq(λ) representation in the good range, then we
can consider X as an Aq(Ω) representation with m = 0 (note that, in this case,
the Levi subgroup L does not contain any Sp(2m) factor). If X is a nongenuine
Aq(λ) representation in the good range, then we can consider X as a Meta-Aq(λ)
representation with Jν equal to the trivial representation of Sp(2m) (for all m).

Proposition 3. The following properties hold:
(1) All Aq(Ω) and Meta-Aq(λ) representations of G are nonzero, irreducible

and unitary.
(2) If X is a Meta-Aq(λ) representation with ν = ρ, then X is an admissible

Aq(λ) in the sense of [12], and has strongly regular infinitesimal character.
(3) All Meta-Aq(λ) representations of G are ω-regular.
(4) All Aq(Ω) representations of G are ω-regular.

The proof of this Proposition will be given at the end of this section.

Remark 2.7. Genuine Aq(λ) representations in the good range are not neces-
sarily strongly regular. For example, take G = Mp(4), q = l + u with L ∼= Ũ(1, 1),
so that ρ(u) =

(
3
2 ,−

3
2

)
and ρ(l) =

(
1
2 ,

1
2

)
, and choose λ =

(
− 1

2 ,
1
2

)
. The module

Aq(λ) has lowest K-type

(2.18) µ = λ+ 2ρ(u ∩ p) =
(
−1

2
,
1
2

)
+ (2,−2) =

(
3
2
,−3

2

)
and infinitesimal character

(2.19) γ = λ+ ρ(l) + ρ(u) =
(

3
2
,−1

2

)
= γω.

Now we are ready to state our conjecture.

Conjecture 3. Let X be an irreducible admissible representation of Mp(2n).
ThenX is ω-regular and unitary if and only ifX is either an Aq(Ω) or a Meta-Aq(λ).

Theorem 2.8. Conjecture 3 is true for n = 1 and n = 2.

The proof of Theorem 2.8 will occupy most of the remainder of this paper.
Before proving Proposition 3 (and other facts about Aq(Ω) and Meta-Aq(λ) repre-
sentations), we need to collect a few results on cohomological parabolic induction.

Fix a parabolic subalgebra q = l+ u ⊆ g, and a (Levi) subgroup L = NG (q).
The cohomological parabolic induction functor Rq, defined in [16, Def. 6.3.1], maps
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(l,L ∩K) modules to (g,K) modules. Its restriction to K, denoted by RK
q , maps

(L ∩K)-modules to K-modules.

Proposition 4. ([17, Lemma 6.5]). Let W be an irreducible representation
of L ∩K, and let µL be a highest weight of W . Set

µ = µL + 2ρ (u ∩ p) .

If µ is dominant for K, then every irreducible constituent of RK
q (W ) has highest

weight µ. Otherwise, RK
q (W ) = 0.

Proposition 5. ([17, Theorems 1.2, 1.3] and [6, Theorem 10.44]). Suppose
that the group L = NG (q) meets every component of G and that h ⊆ l is a Cartan
subalgebra. Let Y be an (l,L ∩K) module, and let γL ∈ h∗ be a weight associated
to the infinitesimal character of Y . Then

(1) The weight γ = γL + ρ (u) ∈ h∗ is attached to the infinitesimal character
of the representation RqY .

(2) If Y is in the good range for q, that is

(2.20) Re
〈
γL + ρ (u) , α

〉
> 0 ∀α ∈ ∆(u),

the following additional properties hold:
(a) If Y is irreducible and unitary, then RqY is irreducible, non zero and

unitary.
(b) The correspondence

δL 7−→ δ = δL + 2ρ (u ∩ p)

gives a bijection between lowest (L ∩K)-types of Y and lowest K-
types of RqY . In fact, every such expression for δ is dominant for
K.

Remark 2.9. If the inequality in equation 2.20 is not strict, then the induced
module RqY may be zero or not unitary, and some of the lowest (L ∩K)-types δL

may give rise to weights for K that are not dominant.

We now give the proof of Proposition 3.

Proof. Part (1) of Proposition 3 follows directly from Proposition 5, because
both Ω and Cλ ⊗ Jν are assumed to be in the good range for q.

For the second part, write γL for the infinitesimal character of Z = Cλ ⊗ Jν .
Assume Z is in the good range for q, so that γL + ρ (u) is strictly dominant for the
roots of ∆(u), and choose ν = ρ. Note that Z has infinitesimal character

γL = λ+ ρ(l)

for some choice of positive roots ∆+(l) ⊂ ∆(l, t). By Proposition 5, the infinitesimal
character of X = RqZ is

γ = γL + ρ (u) = λ+ ρ(l) + ρ (u) = λ+ ρ.

Here ρ is one half the sum of the roots in ∆+(g) = ∆+(l)∪∆ (u). We want to prove
that γ is strongly regular.
If α ∈ ∆+ (l), then

(2.21) 〈γ − ρ, α〉 = 〈λ, α〉 = 0
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because λ is the differential of a one-dimensional representation of L.
If α is a simple root in ∆(u), then 〈ρ, α〉 = 1 or 2, depending on whether α is short
or long, and 〈γ, α〉 > 0 (by the “good range” condition). So{

〈γ − ρ, α〉 > −1 if α is short
〈γ − ρ, α〉 > −2 if α is long.

Now, because λ is the differential of a nongenuine character, the inner product
〈λ, α〉 has integer values for all roots in ∆+(g):

〈γ − ρ, α〉 = 〈λ, α〉 ∈ Z ∀α ∈ ∆+(g).

Notice that 〈λ, α〉 is an even integer if α is long. Then

(2.22) 〈γ − ρ, α〉 = 〈λ, α〉 ≥ 0

for every (simple) root in ∆+ (u). Combining this result with equation 2.21 we find
that

(2.23) 〈γ − ρ, α〉 = 〈λ, α〉 ≥ 0 ∀α ∈ ∆+(g) = ∆+(l) ∪∆ (u) .

Hence our Meta-Aq(λ) representation is admissible in the sense of [12] (c.f. (1.1)).
Equation 2.23 also shows that γ − ρ (and therefore γ) is weakly dominant with
respect to the positive root system ∆+(g), so γ lies in the Weyl chamber of ρ, and
we can take ∆+(γ) = ∆+(g) (c.f. Definition 2.1 and the remark following it). We
conclude that γ is strongly regular.

For the third part of Proposition 3, we must show that every Meta-Aq(λ)
representation is ω-regular. If ν = ρ, this result is not hard to prove. Indeed, strong
regularity easily implies ω-regularity: assume that γ is strongly regular and let γω

be the representative of the infinitesimal character of the oscillator representation
which is in the Weyl chamber of ρ. Then for every simple root α ∈ ∆+(g), we have

(2.24) 〈γω, α〉 = 1.

In particular, 〈γω, α〉 ≤ 〈ρ, α〉, so we get

〈γ − γω, α〉 ≥ 〈γ − ρ, α〉 ≥ 0,

proving that γ is omega-regular.
Now assume that ν 6= ρ. Then Jν is the irreducible quotient of a complementary
series representation of Mp(2) with 1

2 ≤ ν < 1. The infinitesimal character of Jν

is equal to ν, and the restriction of λ+ ρ(l) to t ∩ sp(2) is 1, so the infinitesimal
characters of Z and X = Rq(Z) can be written as

(2.25) γL = λ+ ρ(l) + (ν − 1),

and

(2.26) γ = λ+ ρ+(ν − 1)

respectively. Assume that γL is in the good range, and note that because 1
2 ≤ ν < 1

and λ is integral, this condition is equivalent to requiring that λ + ρ(l) be in the
good range. The same argument used in the second part of the proof shows that
λ is weakly dominant with respect to ∆+(g). Then for all simple roots δ we have
〈ρ, δ〉 ≥ 1, 〈(ν − 1), δ〉 ≥ −1 and

〈γ, δ〉 = 〈λ+ ρ+ (ν − 1), δ〉 ≥ 0 + 1− 1 = 0.
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This proves that γ lies in the Weyl chamber determined by ρ, so we can take
∆+(γ) = ∆+(g), and γ is ω-regular if and only if

〈γ − γω, α〉 ≥ 0 ∀α ∈ ∆+(g).

It is sufficient to restrict the attention to the simple roots that are not orthogonal
to (ν − 1): if 〈(ν − 1), α〉 = 0, then the proof for the previous case (ν = 1) goes
through, so 〈γ − γω, α〉 ≥ 0 by the previous argument.
There are two simple roots in ∆+(g) not orthogonal to (ν − 1): a long root βL ∈
∆+ (l) satisfying

〈ν − 1, βL〉 = 2ν − 2,

and a short root βS ∈ ∆ (u) satisfying

〈ν − 1, βS〉 = 1− ν.

Because βL is simple and long, 〈ρ, βL〉 = 2 and 〈γω, βL〉 = 1 (from 2.24). Then

〈γ − γω, βL〉 = 〈λ+ (ρ− γω) +(ν − 1), βL〉 =

= 〈λ, βL〉+ 〈ρ− γω, βL〉+ 〈(ν − 1), βL〉 =

= 0 + (2− 1) + (2ν − 2) = 2ν − 1 ≥ 0.

Similarly, because βS is simple and short, we have 〈ρ− γω, βS〉 = 1− 1 = 0, and

〈γ − γω, βS〉 = 〈λ, βS〉+ 〈(ν − 1), βS〉 = 〈λ, βS〉+ (1− ν) > 〈λ, βS〉 ≥ 0.

This proves that γ is ω-regular.
Finally, we prove part 4 of Proposition 3. Assume that Ω = Cλ ⊗ ω is in the

good range for q. Recall that ω is an oscillator representation of Mp(2m) ⊂ L. Set
l1 = sp (2m,C) ⊂ l and

Λl1 =
{
β ∈ ∆+ (l1, t) : β is long

}
.

Then
• ω has infinitesimal character γl1

ω = ρ(l1)− 1
2ρ (Λl1)

• Ω has infinitesimal character γL = λ+ ρ(l)− 1
2ρ (Λl1)

• Aq(Ω) has infinitesimal character γ = γL + ρ(u) = λ+ ρ− 1
2ρ (Λl1) .

We need to show that γ is ω-regular, i.e.

(2.27) 〈γ − γg
ω, α〉 ≥ 0 ∀α ∈ ∆+(γ).

Here γg
ω is an infinitesimal character for an oscillator representation of G. We can

write

γg
ω = ρ−1

2
ρ (Λg)

with
Λg =

{
β ∈ ∆+ (g, t) : β is long

}
.

So equation 2.27 is equivalent to:

(2.28)
〈
λ+

1
2
ρ (Λg)−

1
2
ρ (Λ1) , α

〉
≥ 0 ∀α ∈ ∆+(g).

Choose w ∈W (g, t) such that w∆+(g) is the standard positive system of roots:

(2.29) w∆+(g) = {2ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ i < j ≤ n} .



12 ALESSANDRA PANTANO, ANNEGRET PAUL, AND SUSANA A. SALAMANCA-RIBA

Then

(2.30) wλ =

λ1, . . . , λ1︸ ︷︷ ︸
p1+q1

, λ2, . . . , λ2︸ ︷︷ ︸
p2+q2

, . . . , λr, . . . , λr︸ ︷︷ ︸
pr+qr

, 0, . . . , 0︸ ︷︷ ︸
m


for some λi ∈ Z + 1

2 (since Cλ is genuine), and

(2.31) wγ =

λ1, . . . , λ1︸ ︷︷ ︸
p1+q1

, λ2, . . . , λ2︸ ︷︷ ︸
p2+q2

, . . . , λr, . . . , λr︸ ︷︷ ︸
pr+qr

,−1
2
, . . . ,−1

2︸ ︷︷ ︸
m

+ wρ

with wρ = (n, n− 1, . . . , 2, 1). By assumption, Ω is in the good range for q, so γ is
strictly dominant for the roots of u. We also have

(2.32) 〈wγ, wα〉 > 0 ∀α ∈ ∆+(u).

If α is a positive simple root for u, then wα can be of the form

wα =


ei − ei+1 for i =

l∑
k=1

(pk + qk) , 1 ≤ l ≤ r − 1,

en−m − en−m+1 if m > 0,
2en if m = 0.

Equation 2.32 implies that

(2.33) λ1 ≥ λ2 ≥ · · · ≥ λr ≥ −1
2
.

Then wγ is weakly dominant with respect to w∆+(g) (and of course γ is weakly
dominant with respect to ∆+(g)). Therefore, we can choose ∆+(γ) = ∆+(g).
Conjugating γ − γg

ω in a similar way, we find

w(γ−γg
ω) =

λ1 +
1
2
, . . . , λ1 +

1
2︸ ︷︷ ︸

p1+q1

, λ2 +
1
2
, . . . , λ2 +

1
2︸ ︷︷ ︸

p2+q2

, . . . , λr +
1
2
, . . . , λr +

1
2︸ ︷︷ ︸

pr+qr

, 0, . . . , 0︸ ︷︷ ︸
m

 .

Notice that the entries of w(γ − γg
ω) are weakly decreasing and nonnegative (by

2.33). Hence w(γ − γg
ω) is weakly dominant with respect to the roots in w∆+(g):

〈w(γ − γg
ω), wα〉 ≥ 0 ∀α ∈ ∆+(g).

Equivalently,
〈γ − γg

ω, α〉 ≥ 0 ∀α ∈ ∆+(g)
and γ is ω-regular. This concludes the proof of Proposition 3. �

2.3. Some Facts. The lowest K-types of the Aq(Ω) and Meta-Aq(λ) repre-
sentations will play a very important role in the rest of this paper.
Recall that the lowest K-types of a representation are those that are minimal with
respect to the Vogan norm

(2.34) ‖µ‖ = (µ+ 2ρc, µ+ 2ρc) ,

and that any irreducible representation has only finitely many lowest K-types.
It turns out that every Aq(Ω) and Meta-Aq(λ) representation admits a unique
lowest K-type, which is computed in the following proposition.
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Proposition 6. In the setting of Definitions 2.4 and 2.5, let ρ(u ∩ p) be one
half the sum of the noncompact roots of u. Then

(1) The Aq(Ω) representation Rq(Ω) has a unique lowest K-type:

(2.35) µ = µ(q,Ω) = µL + 2ρ(u ∩ p)

with µL the unique lowest L∩K-type of Ω.
(2) The Meta-Aq(λ) representation Rq(Cλ ⊗ Jν) has a unique lowest L∩K-

type:

(2.36) µ = λ⊗ 0 + 2ρ(u ∩ p).

As usual, we have identified K-types and L∩K-type with their highest weights.

Proof. Both results follow from Proposition 5, because Ω and Cλ ⊗ Jν are in
the good range for q. �

To prove that certain representations are nonunitary, we will rely heavily on
the following useful result.

Proposition 7. (Parthasarathy’s Dirac Operator Inequality [8], [19]) Let X
be a unitary representation of G with infinitesimal character γ, and let µ be a K-
type occurring in X. Choose a positive system ∆+(g, t) ⊆∆(g, t) of roots containing
our fixed ∆+

k , and let ρn, ρc be one half the sums of the noncompact and compact
roots in ∆+(g, t), respectively. Choose w ∈ Wk, the Weyl group of k, so that
w(µ− ρn) is dominant with respect to ∆+

k . Then

(2.37) (w(µ− ρn) + ρc, w(µ− ρn) + ρc) ≥ (γ, γ) .

We will often refer to the Parthasarathy’s Dirac Operator Inequality as “PDOI”.

If X is an irreducible admissible representation of Mp(2n) and X∗ its contra-
gredient representation, then X and X∗ have the same properties; in particular,
X is unitary, ω-regular, an Aq(Ω), a Meta-Aq(λ), a discrete series representation,
finite dimensional, one-dimensional, etc. if and only if X∗ is. We will sometimes
use this symmetry to reduce the number of cases to be considered. Note that the
K-types which occur in X∗ are precisely those dual to the K-types occurring in X.

Proposition 8. Let µ be an irreducible representation of Ũ(n) with highest
weight

(2.38) λ = (a1, a2,...,an) .

Then the contragredient representation µ∗ of µ has highest weight

(2.39) ξ = (−an,−an−1, · · · − a2,−a1) .

Proof. Let µ be realized on the finite dimensional vector space V . Realize
µ∗ on the dual space V ∗. The weights of µ∗ are easily seen to be the opposite of
the weights of µ: if {vλ1 , vλ2 , . . . , vλr} is a basis of V consisting of weight vectors
corresponding to the weights λ1, . . . , λr, then the dual basis

{
v∗λ1

, v∗λ2
, . . . , v∗λr

}
of

V ∗ is a set of weight vectors corresponding to the weights −λ1, . . . ,−λr.
Define −ξ = (an, an−1, . . . , a1), with λ = (a1, a2,...,an) the highest weight for

µ.
−ξ is an extremal weight of µ (because is Weyl group conjugate to λ), and is the
lowest weight of µ (because it is antidominant with respect to our fixed set of
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positive roots). Then ζ − (−ξ) is a a sum of positive roots, for every weight ζ of µ.
Equivalently, ξ − (−ζ) is a a sum of positive roots, for every weight (−ζ) of µ∗,
hence ξ is the highest weight of µ∗. �

2.4. Langlands Classification and Lowest K-Types. Our proof of The-
orem 2.8 proceeds by K-types: for each K-type µ and each ω-regular irreducible
unitary representation π with lowest K-type µ, we show that π must be either an
Aq(Ω) or a Meta-Aq(λ) representation. Therefore, it is important to know which
representations contain a given µ as a lowest K-type, and what are the possible
infinitesimal characters for such representations.
Because all ω-regular infinitesimal characters are in particular real, we will assume
from now on that all infinitesimal characters have this property.

To determine the set of representations with a given infinitesimal character,
we use the Langlands Classification, which is a construction equivalent to Vogan’s
construction from Proposition 1, but uses real parabolic induction instead of coho-
mological parabolic induction. According to the Langlands Classification (c.f. [5],
[17]), every irreducible admissible representation of G occurs as an irreducible quo-
tient X(σ, ν) of an induced representation

(2.40) IP (σ, ν) = IndG
P (σ ⊗ ν ⊗ 1),

where P = MAN is a cuspidal parabolic subgroup of G, σ a discrete series repre-
sentation of M , and ν a character of A. (We are abusing notation and using ν to
denote both the character and its differential.) If the infinitesimal character of the
representation is regular, as it always is in our setting, then IP (σ, ν) has a unique ir-
reducible quotient. Inducing data give rise to equivalent irreducible representations
if and only if they are conjugate by G.

We now give a more specific description of the data for irreducible representa-
tions of Mp(4) with real regular infinitesimal character (see also [1], [9]); for Mp(2),
the situation is similar, yet much simpler.
Irreducible representations of Mp(4) are in one-one correspondence with triples

(2.41) (MA, σ, ν)

as follows. There are four conjugacy classes of cuspidal parabolic subgroups, given
by their Levi factors

(2.42) MA =


Mp(4) with M = Mp(4), A = {1}
Mp(2)× G̃L(1,R) with M = Mp(2)× Z/4Z, A = R
G̃L(2,R) with M = Mp(2)±, A = R
G̃L(1,R)2 with M = (Z/4Z)2 , A = R2

(in the second and fourth case, MA and M are actually quotients by a subgroup
of order 2 of this product). The group G̃L(2,R) above is the split double cover
of GL(2,R). The discrete series σ may be given by its Harish-Chandra parameter
and by a character of Z/4Z or (Z/4Z)2. The parameter ν can be conjugated into a
positive number or a pair of positive numbers (recall that we are only considering
representations with real regular infinitesimal character, so ν is real and, if A is
nontrivial, ν is nonzero).

Recall that to every K-type µ we can assign a Vogan parameter λa = λa(µ) ∈
t∗ as follows (c.f. [16]): choose a representative of ρ such that µ + 2ρc is weakly
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dominant with respect to ρ. Then

(2.43) λa = p(µ+ 2ρc − ρ),

where p denotes the projection onto the positive Weyl chamber determined by ρ.
The Vogan parameter λa then gives the Harish-Chandra parameter of σ, for any
representation X(σ, ν) with lowest K-type µ. This determines the (conjugacy class
of the) Levi subgroup MA as well. Write

(2.44) λa = (a, b)

with a ≥ b.
(1) If |a| 6= |b| and both are nonzero, then MA = Mp(4), and λa is the

Harish-Chandra parameter of a discrete series of G.
(2) If a > b = 0 then MA = Mp(2) × G̃L(1,R). In this case, A = R so ν is

just a positive number. The infinitesimal character of the corresponding
representation is

(2.45) γ = (a, ν).

The character of Z/4Z is also uniquely determined by µ. An analogous
statement holds if a = 0 > b; then we have γ = (ν, b) .

(3) If a = −b 6= 0 then MA = G̃L(2,R). Also in this case, A = R and ν
is a positive number. The infinitesimal character of the corresponding
representation is

(2.46) γ = (a+ ν,−a+ ν) .

(4) If a = b = 0, then we say that µ is a fine K-type. In this case, the
representation is a principal series, and has infinitesimal character

(2.47) γ = (ν1, ν2) .

The case a = b 6= 0 does not occur; the parameter λa must be such that its
centralizer La in G is a quasisplit Levi subgroup [16].

3. The Group Mp(2)

Let G = Mp (2,R) be the connected double cover of

(3.1) Sp (2,R) =
{
g ∈ GL (2,R) : gt

(
0 1
−1 0

)
g =

(
0 1
−1 0

)}
.

Note that Sp (2,R) equals SL (2,R). The Lie algebra of G is

(3.2) g0 =
{(

a b
c −a

)
: a, b, c ∈ R

}
,

and the maximal compact Cartan subalgebra of g0 is

(3.3) t0 = k0 =
{(

0 t
−t 0

)
: t ∈ R

}
.

The maximal compact subgroup of Sp (2,R) is SO (2) ' U (1), hence the maximal
compact subgroup K of Mp (2,R) is isomorphic to Ũ(1). We identify K̂ with 1

2Z,
as follows: write

(3.4) K '
{
(g, z) ∈ U(1)× C× : z2 = g

}
.
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Then the character of K corresponding to the half integer a is given by

(3.5) (g, z) 7→ z2a.

This character is genuine if and only if a ∈ Z + 1
2 .

We are interested in ω-regular unitary representations of G. It turns out that
they are all obtained by either complementary series or cohomological parabolic
induction from a Levi subgroup L of a theta stable parabolic subalgebra q = l + u
of g. This subalgebra q is related to the subalgebra qa defined in Proposition 1.

Proposition 9. If G = Mp (2,R) and X is an irreducible unitary representa-
tion of G with ω-regular infinitesimal character, then either

(1) X ' Aq (Ω) for some θ-stable parabolic subalgebra q and some represen-
tation Ω of L, as in Definition 2.4, or

(2) X is isomorphic to a Meta-Aq (λ) representation, as in Definition 2.5.

Proof. Let X be an irreducible unitary representation of G with ω-regular
infinitesimal character, and let µ = (a) ∈ 1

2Z be a lowest K-type for X. We prove
that X is either an Aq(Ω) or a Meta-Aq(λ) representation. Recall that, for Mp(2),
the Aq(Ω) representations are the oscillator representations and the genuine discrete
series. The Meta-Aq(λ) representations are the nongenuine discrete series and the
complementary series Jν , with 1

2 ≤ ν ≤ 1 (if ν = 1 then Jν is trivial representation).
First assume that a ∈ 1

2Z \
{
0,± 1

2 ,±1
}
. Vogan’s classification of irreducible

admissible representations ([15]) implies that if X has lowest K-type µ = (a) in
1
2Z \

{
0,± 1

2 ,±1
}
, then X is a discrete series representation with Harish-Chandra

parameter λ = a − sgn (a) 6= 0. Hence X is an Aq(Ω) representation if genuine,
and a Meta-Aq(λ) representation if nongenuine. We notice that in this case

(3.6) X = Aq (λ)

with q the Borel subalgebra determined by λ. Because |λ| ≥ 1
2 , X is ω-regular (see

Example 2.3).
We are left with the cases a ∈

{
0,± 1

2 ,±1
}
. First assume a = ±1, and choose

ρn = ±1. Since ρc = 0, Vogan’s classification of admissible representations gives
that X has infinitesimal character γ = (λa, ν) = (0, ν). In this case, for w trivial,
we have

(3.7) 〈w(µ− ρn) + ρc, w(µ− ρn) + ρc〉 = 0

so the Parthasarathy’s Dirac operator inequality (“PDOI”, cf. Proposition 7) yields
that if ν 6= 0, then X is nonunitary. We conclude that there are no irreducible
unitary ω-regular representations of G with lowest K-type µ = ±1.

Next, assume a = ± 1
2 . Note that µ = ± 1

2 is the lowest K-type of an even
oscillator representation ω, and that ω = Aq (Ω) with q = g and Ω = ω. We will
show that the oscillator representations are the only irreducible unitary ω-regular
representations X of G containing µ = ± 1

2 as their lowest K-type.
Choose µ = ± 1

2 , and ρn = ±1 with the same sign as µ. For w trivial, we get

(3.8) 〈w(µ− ρn) + ρc, w(µ− ρn) + ρc〉 =
1
4
.

So PDOI implies that X is nonunitary if its infinitesimal character γ satisfies
〈γ, γ〉 > 1

4 . On the other hand, X is not ω-regular if 〈γ, γ〉 < 1
4 . Hence any

representation X of G (with lowest K-type ± 1
2 ) which is both ω-regular and uni-

tary must satisfy 〈γ, γ〉 = 1
4 .
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Because µ =
(
± 1

2

)
is fine, and X contains µ as a lowest K-type, X must be induced

from a representation δ ⊗ ν of P = MAN , where

(3.9) M ' Z̃2 ' Z4.

The infinitesimal character γ of X is given by (0, ν), and the condition 〈γ, γ〉 = 1
4

implies ν = ± 1
2 . The two choices are conjugate by the Weyl group, hence give

equivalent representations; we assume ν = 1
2 . Next, we prove that the choice of δ is

also uniquely determined by µ. This is an easy application of Frobenius reciprocity:
if µ is contained in X = Ind(δ ⊗ ν), then δ is contained in the restriction of µ to
M . With our identification (3.4), we can write

(3.10) M = {(1,±1) , (−1,±i)}

and the restriction of a K-type µ = (b) to M is the character

Ũ(1) → C×, (g, z) 7→ z2b.

The K-types µ = 1
2 and µ = − 1

2 restrict to the characters (g, z) 7→ z and (g, z) 7→
z−1 respectively. Then δ must be the identity M -type (x 7→ x) if µ = 1

2 , and the
inverse M -type (x 7→ x−1) if µ = − 1

2 . Note that, in both cases, X = Ind(δ ⊗ 1
2 ) is

an oscillator representation.
Lastly, we assume a = 0. If X is an irreducible unitary ω-regular representation

containing the trivial K-type, then X = Jν for some value of ν (these are the only
spherical representations ofMp(2)). Note that PDOI implies that |ν| ≤ 1 and the ω-
regular condition requires that |ν| ≥ 1

2 , hence 1
2 ≤ ν ≤ 1. So X is a complementary

series (and a Meta-Aq(λ) representation). �

4. The Group Mp(4)

4.1. The Structure of Mp(4). We realize the Lie algebra g0 = sp(4,R) of
Mp(4) and the Lie algebra k0 of its maximal compact subgroup as

(4.1) g0 =




a11 a12 b11 b12
a21 a22 b12 b22
c11 c12 −a11 −a21

c12 c22 −a12 −a22

 : ai,j , bi,j , ci,j ∈ R


and

(4.2) k0 =

Y =


0 a x z
−a 0 z y
−x −z 0 a
−z −y −a 0

 : a, x, y, z ∈ R

 .

The maximal compact subgroup K ' Ũ(2) of G = Mp(4) is isomorphic to the
subgroup

U = {(g, z) ∈ U(2)× U(1) : det(g) = z2}

of U(2)× U(1). Identifying k0 with the Lie algebra of U gives a map

(4.3) ι : k0 → u(2)⊕ u(1), Y 7→ ι(Y ) =
[(

xi a+ zi
−a+ zi yi

)
,
x+ y

2
i

]
,
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where Y is the element of k0 as in (4.2). We denote the exponentiated map K → U
by ι as well. Let a0 be the diagonal CSA of g0, A = exp(a0), and M = CentK(A).
Here exp denotes the exponential map in Mp(4). Also let

a = exp


0 0 π 0
0 0 0 0
−π 0 0 0
0 0 0 0

 b = exp


0 0 0 0
0 0 0 π
0 0 0 0
0 −π 0

 ,(4.4)

x = exp


0 0 π 0
0 0 0 π
−π 0 0 0
0 −π 0 0

 y = exp


0 0 π 0
0 0 0 −π
−π 0 0 0
0 π 0 0

 .(4.5)

Then

ι(a) = exp
[(
iπ 0
0 0

)
,
π

2
i

]
=
[(
−1 0
0 1

)
, i

]
(4.6)

ι(b) = exp
[(

0 0
0 iπ

)
,
π

2
i

]
=
[(

1 0
0 −1

)
, i

]
(4.7)

ι(x) = exp
[(
iπ 0
0 iπ

)
, πi

]
=
[(
−1 0
0 −1

)
,−1

]
and(4.8)

ι(y) = exp
[(
πi 0
0 −πi

)
, 0
]

=
[(
−1 0
0 −1

)
, 1
]
.(4.9)

We notice that pr(a) = diag(−1, 1,−1, 1) = pr(a−1), x = ab and y = ab−1. Set

(4.10) z := a2 = exp


0 0 2π 0
0 0 0 0

−2π 0 0 0
0 0 0 0

 = exp


0 0 0 0
0 0 0 2π
0 0 0 0
0 −2π 0 0

 = b2.

Then Z(Mp(4)) = {e, z, x, y} = 〈x, y〉 ' Z2 × Z2, with e the identity, and

(4.11) M = {e, z, x, y, a, a−1, b, b−1} = 〈a, b〉 ' Z4 × Z2.

Let

(4.12) t0=




0 0 θ 0
0 0 0 ϕ
−θ 0 0 0
0 −ϕ 0 0

 : θ, ϕ ∈ R

 ⊆ k0,

a fundamental Cartan subalgebra. Then

(4.13) ι(t0) =
{[(

θi 0
0 ϕi

)
,
θ + ϕ

2
i

]
: θ, ϕ ∈ R

}
and the corresponding Cartan subgroup T is given by

(4.14) ι(T ) =
{
tθ,ϕ =

[(
eiθ 0
0 eiϕ

)
, e

θ+ϕ
2 i

]
: θ, ϕ ∈ R

}
.

A weight µ =
(

k
2 ,

l
2

)
corresponds to the character of T given by

(4.15) tθ,ϕ 7→ e
kθ+lϕ

2 i.
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We identify K-types with their highest weights. The K-type

(4.16) µ =
(
k

2
,
l

2

)
is genuine if and only if both k and l are odd, and nongenuine if they are both even.
In each case, the K-type has dimension k−l

2 + 1, the other weights being

(4.17)
(
k

2
− j,

l

2
+ j

)
, for 1 ≤ j ≤ k − l

2
.

We will check the unitarity of (ω-regular) representations of Mp(4) by parti-
tioning the set of Ũ(2)-types µ in a suitable way, and considering for each family
the set of ω-regular representations which have such a µ as a lowest K-type. The
symmetry considerations at the end of Section 2.3 and Proposition 8 reduce the
Ũ(2)-types we need to consider to those of the form

(4.18) µ =
(
k

2
,
l

2

)
with k ≥ |l| .

4.2. The Genuine Case: K-Types. We partition the genuine K-types into
those that are lowest K-types of Aq(Ω) representations, and those that are not.
In order to construct an Aq(Ω) module, we must start with a theta stable subalgebra
q = l + u. Any such algebra is of the form

q = q(ξ)= l(ξ) + u(ξ),

where ξ ∈ it∗0,

l(ξ) = t +
∑

〈α,ξ〉=0

gα,

u(ξ) =
∑

〈α,ξ〉>0

gα.

We get 10 theta stable parabolic algebras qi = q(ξi), with

ξ1 = (0, 0) ξ6 = (0,−1)
ξ2 = (2, 1) ξ7 = (−1,−2)
ξ3 = (2,−1) ξ8 = (1,−2)
ξ4 = (1,−1) ξ9 = (1, 1)
ξ5 = (1, 0) ξ10 = (−1,−1).

The corresponding Levi factors Li are

L1 = Mp(4) L6 = Ũ(0, 1)×Mp(2)
L2 = Ũ(1, 0)× Ũ(1, 0) L7 = Ũ(0, 1)× Ũ(0, 1)
L3 = Ũ(1, 0)× Ũ(0, 1) L8 = Ũ(0, 1)× Ũ(1, 0)
L4 = Ũ(1, 1) L9 = Ũ(2, 0)
L5 = Ũ(1, 0)×Mp(2) L10 = Ũ(0, 2).

Some of these Levi subgroups are, of course, pairwise identical; however, the cor-
responding nilpotent parts of the parabolic subalgebras are different. We express
these differences in our notation for the Li as above. We notice that

• any Aq(Ω) representation with L = L7 is dual to one with L = L2.
Similarly for the pairs {L6, L5}, {L8, L3}, and {L10, L9};
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• any Aq(Ω) representation with L = L9 is a discrete series which may also
be constructed with L = L2 (see [6]).

Hence we may restrict our attention to the cases

L1 = Mp(4),(4.19)

L2 = Ũ(1, 0)× Ũ(1, 0),(4.20)

L3 = Ũ(1, 0)× Ũ(0, 1),(4.21)

L4 = Ũ(1, 1) and(4.22)

L5 = Ũ(1, 0)×Mp(2).(4.23)

With L1 = Mp(4), the Aq(Ω) modules we obtain are the four oscillator repre-
sentations with lowest K-types

(4.24) Λ1 =
{(

3
2
,
1
2

)
,

(
1
2
,
1
2

)
,

(
−1

2
,−1

2

)
,

(
−1

2
,−3

2

)}
.

Now consider L2 = Ũ(1, 0)× Ũ(1, 0). Then

ρ(u) = (2, 1)(4.25)

ρ(l) = (0, 0)(4.26)

ρ(u ∩ p) =
(

3
2
,
3
2

)
.(4.27)

Set

(4.28) λ = (λ1, λ2)

with λi ∈ Z + 1
2 . For λ to be in the good range for q, the parameter

(4.29) λ+ ρ(l) + ρ(u) = (λ1 + 2, λ2 + 1)

must be strictly dominant for the roots {2e1, 2e2, e1 ± e2} of u. This says that

(4.30) λ1 + 2 > λ2 + 1 > 0 ⇔ λ1 ≥ λ2 ≥ −1
2
.

We obtain lowest K-types of the form

(4.31) µ = λ+ 2ρ(u ∩ p) = (λ1 + 3, λ2 + 3) ,

which belong to the set

(4.32) Λ2 =
{

(r, s) : r ≥ s ≥ 5
2

}
.

For L3 = Ũ(1, 0)× Ũ(0, 1), we have essentially two choices for u, corresponding
to

(4.33) ρ(u) = (2,−1) and ρ(u) = (1,−2).

The collection of Aq(Ω) modules obtained with the second choice are easily seen to
be the contragredient modules of those obtained with the first choice, so we may
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assume that

ρ(u) = (2,−1)(4.34)

ρ(l) = (0, 0)(4.35)

ρ(u ∩ p) =
(

3
2
,−1

2

)
.(4.36)

This time λ = (λ1, λ2) is in the good range if the parameter

(4.37) λ+ ρ(l) + ρ(u) = (λ1 + 2, λ2 − 1)

is strictly dominant for the roots {2e1,−2e2, e1 ± e2}, i. e.,

(4.38) λ1 + 2 > − (λ2 − 1) > 0 ⇔ λ1 ≥ −λ2 ≥ −1
2
.

We get lowest K-types of the form

(4.39) µ = (λ1 + 3, λ2 − 1) ,

which give rise to the collection

(4.40) Λ3 =
{

(r, s) : s ≤ −1
2
, r ≥ −s+ 2

}
.

For L4 = Ũ(1, 1), we have

ρ(u) =
(

3
2
,−3

2

)
(4.41)

ρ(l) =
(

1
2
,
1
2

)
(4.42)

ρ(u ∩ p) = (1,−1) .(4.43)

Set

(4.44) λ = (λ1,−λ1)

with λ1 ∈ Z + 1
2 . Then λ is in the good range if

(4.45) λ+ ρ(l) + ρ(u) = (λ1 + 2,−λ1 − 1)

is strictly dominant for the roots {2e1,−2e2, e1 − e2} of u. Given that λ1 is half-
integral, this condition is equivalent to

(4.46) λ1 ≥ −1
2
.

We obtain lowest K-types of the form

(4.47) µ = λ+ 2ρ(u ∩ p) = (λ1 + 2,−λ1 − 2) ,

which belong to the set

(4.48) Λ4 =
{

(r,−r) : r ≥ 3
2

}
.

Finally, let L5 = Ũ(1, 0)×Mp(2). In this case we have

ρ(u) = (2, 0)(4.49)

ρ(l) = (0, 1)(4.50)

ρ(u ∩ p) =
(

3
2
,
1
2

)
.(4.51)
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We consider representations of L5 of the form Ω = Cλ ⊗ ω, with ω an oscillator
representation of Mp(2). If ω is an odd oscillator representations, then ω is a
discrete series of Mp(2); the corresponding Aq(Ω) representation is a discrete series
of Mp(4) and has already been considered. Hence we may assume that ω is an even
oscillator representation of Mp(2).
The infinitesimal character of Ω = Cλ ⊗ ω is

(
λ, 1

2

)
; this is in the good range if

(4.52)
(
λ,

1
2

)
+ (2, 0) =

(
λ+ 2,

1
2

)
is strictly dominant with respect to ∆(u) = {2e1, e1 ± e2}, i. e.,

(4.53) λ ≥ −1
2
.

The lowest L∩K-type of Ω is then either

(4.54)
(
λ,

1
2

)
or
(
λ,−1

2

)
depending on whether ω is even holomorphic or even antiholomorphic. Adding
2ρ(u ∩ p) we get the following set of lowest K-types

(4.55) Λ5 =
{(

r,
3
2

)
: r ≥ 5

2

}
∪
{(

r,
1
2

)
: r ≥ 5

2

}
.

Remark 4.1. The sets Λi for 1 ≤ i ≤ 5 list all the genuine K-types (r, s) which
occur as lowest K-types of Aq(Ω) modules, and satisfy r ≥ |s|.

This leaves us with the following set Σ of genuine K-types which are NOT
lowest K-types of Aq(Ω) representations:

(4.56) Σ =
{(

1
2
,−1

2

)
,

(
3
2
,
3
2

)}
∪
{

(r,−r + 1): r ≥ 3
2

}
.

4.3. The Set Σ of Non-Aq(Ω) Lowest K-Types. We show that any ω-
regular representation with a lowest K-type in the set Σ must be nonunitary. In
most cases this is done using PDOI.

First consider

(4.57) µ =
(

3
2
,
3
2

)
.

Choose

(4.58) ρn =
(

3
2
,
3
2

)
= µ

and w trivial. Then

(4.59) 〈w(µ− ρn) + ρc, w(µ− ρn) + ρc〉 = 〈ρc, ρc〉 =
1
2

because ρc =
(

1
2 ,−

1
2

)
. Notice that any ω-regular infinitesimal character γ satisfies

(4.60) 〈γ, γ〉 ≥ 〈γω, γω〉 =
(

3
2

)2

+
(

1
2

)2

=
5
2
>

1
2
,

hence the Parthasarathy’s Dirac operator inequality (2.37) fails. This proves that
any ω-regular representation with lowest K-type µ =

(
3
2 ,

3
2

)
is nonunitary.
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Now let

(4.61) µ = (r,−r + 1)

with r ≥ 3
2 . Choose

(4.62) ρn =
(

3
2
,−1

2

)
and w trivial. Then

(4.63) w(µ− ρn) + ρc = (r − 1,−r + 1) .

and

(4.64) 〈w(µ− ρn) + ρc, w(µ− ρn) + ρc〉 = 2(r − 1)2.

A representation with this lowest K-type has Vogan parameter

(4.65) λa = p(µ+ 2ρc − ρ).

Since

(4.66) ρ = (2,−1),

we get

(4.67) λa = (r − 1,−r + 1).

Hence the corresponding standard module is induced from a parabolic subgroup
P = MAN with MA ' GL(2,R), and the infinitesimal character is of the form

(4.68) γ = (r − 1 + ν,−r + 1 + ν)

for some number ν (see section 2.4).
In order for γ to be ω-regular, ν must be real with |ν| ≥ 1

2 . Recall from Section 2.4
that we may conjugate ν to be positive. Then we have ν ≥ 1/2, and

(4.69) 〈γ, γ〉 = (r − 1 + ν)2 + (r − 1− ν)2 > 2(r − 1)2

Because the PDOI fails, such a representation is nonunitary.
Finally consider the K-type

(4.70) µ =
(

1
2
,−1

2

)
.

If we choose

(4.71) ρn =
(

3
2
,−1

2

)
and w = −1 (the long Weyl group element), then

(4.72) w(µ− ρn) + ρc =
(

3
2
,
1
2

)
,

and

(4.73) 〈w(µ− ρn) + ρc, w(µ− ρn) + ρc〉 =
5
2

= 〈γω, γω〉.

PDOI implies that any unitary ω-regular representation containing this K-type
must have infinitesimal character γω. It is easy to check that other choices for
ρn do not give any better estimate. So it remains to show that the irreducible
representations with lowest K-type µ =

(
1
2 ,−

1
2

)
and infinitesimal character γω

(these are two principal series representations which are dual to each other) are
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nonunitary. We do this in Section 5, by explicitly computing the signature of a
Hermitian form.

4.4. Uniqueness of Representations with Aq(Ω) Lowest K-types. In
this section we prove that there are no ω-regular unitary representations of G which
have an Aq(Ω) lowest K-type, but are not Aq(Ω) representations. We do this case
by case, considering in turn the K-types listed in the sets Λi in Section 4.2. For each
K-type µ, we show that there is only one ω-regular irreducible representation with
lowest K-type µ and such that µ satisfies PDOI. We rely heavily on the Langlands
classification and Vogan’s lowest K-type ideas as outlined in Section 2.4.

4.4.1. The Set Λ1. Suppose µ ∈ Λ1. We only have to consider the cases µ =(
1
2 ,

1
2

)
and µ =

(
3
2 ,

1
2

)
(the other K-types in Λ1 are dual to these, by Proposition

8). Using PDOI with ρn =
(

3
2 ,

3
2

)
and w = 1, we can easily see that every unitary

ω-regular representation π of G containing either of these two lowest K-types has
infinitesimal character γω.

The K-type
(

1
2 ,

1
2

)
is one-dimensional. In this case, the uniqueness of π follows

directly from a result of Zhu [20] which states that a representation with scalar
lowest K-type is uniquely determined by its infinitesimal character.

It remains to show that there is a unique irreducible representation with low-
est K-type µ =

(
3
2 ,

1
2

)
and infinitesimal character γω. We compute the Vogan-

parameter λa associated to µ. We have

(4.74) µ+ 2ρc =
(

5
2
,−1

2

)
;

we choose ρ = (2,−1) to get

(4.75) µ+ 2ρc − ρ =
(

1
2
,
1
2

)
.

This parameter is not in the Weyl chamber determined by ρ, so we project it and
obtain

(4.76) λa =
(

1
2
, 0
)
.

So the corresponding Levi factor is

(4.77) MA = Mp(2)× G̃L(1,R),

with the discrete series with Harish-Chandra parameter 1
2 on the first factor, and a

character χε,ν on the second. In order to obtain infinitesimal character γω on the
induced representation, we must have ν = 3

2 , and the sign ε is uniquely determined
by the lowest K-type. So there is indeed only one such representation, which must
then be the odd oscillator representation.

4.4.2. The Sets Λ2 and Λ3. Since the elements of these two sets are lowest K-
types of Aq(λ) representations with L compact, they are lowest K-types of discrete
series. In this case, the representation is determined uniquely and there is nothing
to prove.

4.4.3. The Set Λ4. Now suppose that µ ∈ Λ4. Then

(4.78) µ = (a,−a) with a ≥ 3
2
.
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The corresponding Vogan parameter can easily be computed:

(4.79) λa =
(
a− 1

2
,−a+

1
2

)
,

so we get MA = G̃L(2,R). The representation depends only on a continuous
parameter ν ≥ 0, and has infinitesimal character

(4.80) γ =
(
a− 1

2
+ ν,−a+

1
2

+ ν

)
.

Notice that for γ to be ω-regular, we must have ν ≥ 1
2 . Set ρn =

(
3
2 ,−

1
2

)
; then

(4.81) µ− ρn + ρc = (a− 1,−a)

and PDOI gives

(4.82) 〈γ, γ〉 ≤ a2 + (a− 1)2 .

It is now easy to check that this condition implies ν ≤ 1
2 . Hence we must have

ν = 1
2 , and we are done with this case.
4.4.4. The Set Λ5. Now consider K-types of the form µ =

(
a, 3

2

)
and µ =

(
a, 1

2

)
with a ≥ 5

2 . In both cases, the Vogan algorithm yields

(4.83) λa = (a− 1, 0) ,

so the corresponding Levi subgroup isMA = Mp(2)×G̃L(1,R). The representation
of Mp(2) is the discrete series representation with Harish-Chandra parameter a−1;
on G̃L(1,R) we have a character χε,ν . The sign ε is uniquely determined by the
lowest K-type (µ =

(
a, 3

2

)
or µ =

(
a, 1

2

)
), hence any representation with lowest

K-type µ is uniquely determined by its infinitesimal character

(4.84) γ = (a− 1, ν) .

It remains to check that the unitarity and ω-regularity conditions determine ν
uniquely. Note that in order for γ to be ω-regular, we must have ν ≥ 1

2 .
Now using ρn =

(
3
2 ,

3
2

)
for µ =

(
a, 3

2

)
, and ρn =

(
3
2 ,−

1
2

)
for µ =

(
a, 1

2

)
, we obtain

(4.85) µ− ρn + ρc =
(
a− 1,∓1

2

)
.

By PDOI, γ must have length no greater than this parameter, so ν ≤ 1
2 . This forces

ν = 1
2 , proving the uniqueness.

4.5. The Nongenuine Case. In this section, we show that any nongenuine
ω-regular unitary representation of Mp(4) is a Meta-Aq(λ) representation.

4.5.1. Nongenuine K-types. As for the genuine case, we partition the nongen-
uine K-types into families, and consider each family in turn. Note that nongenuine
K-types are irreducible representations of U(2), parameterized by pairs of integers.
Since the calculations are very similar to those performed in the genuine case, we
omit many of the details. Partitioning the lowest K-types of Meta-Aq(λ) represen-
tations according to the Levi factors L1 through L5 of possible parabolic subalgebras
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as in Section 4.2, we get the families

Λ1 = {(0, 0)} ,(4.86)

Λ2 = {(r, s) : r ≥ s ≥ 3} ,(4.87)

Λ3 = {(r.s) : s ≤ −1, r ≥ −s+ 2} ,(4.88)

Λ4 = {(r,−r) : r ≥ 2} ,(4.89)

Λ5 = {(r, 1) : r ≥ 3} .(4.90)

The nongenuine K-types which are not lowest K-types of Meta-Aq(λ) representa-
tions are therefore part of the set

Σ = {(r, 2) : r ≥ 2}∪{(r, 0) : r ≥ 1}∪{(r + 1,−r) : r ≥ 1}∪{(2, 1) , (1, 1) , (1,−1)} .

4.5.2. The K-Types in Σ. For every K-type µ in the set Σ we can show, using
PDOI, that there is no ω-regular unitary representation which has µ as one of its
lowest K-types. For example, for

(4.91) µ = (2, 1)

we can use ρn =
(

3
2 ,

3
2

)
to see that

(4.92) µ− ρn + ρc = (1,−1) ,

a weight whose length is strictly less than that of any ω-regular infinitesimal charac-
ter. Because PDOI fails, an ω-regular representation with lowest K-type µ cannot
be unitary. For a second example, let’s consider

(4.93) µ = (r, 0)

with r ≥ 1. The corresponding Vogan-parameter is

(4.94) λa = (r − 1, 0) .

If r = 1, then λa = (0, 0), so any representation with lowest K-type µ = (r, 0) is
a principal series. In this case, with ρn =

(
3
2 ,−

1
2

)
and w the long element of the

Weyl group, we get

(4.95) w(µ− ρn) + ρc = (1,−1) ,

once again a weight whose length is less than that of γω.

If r ≥ 2, then the corresponding Levi subgroup is MA = Mp(2) × G̃L(1,R), and
the infinitesimal character is

(4.96) γ = (r − 1, ν) .

The ω-regularity condition forces ν ≥ 1
2 . If we choose ρn =

(
3
2 ,−

1
2

)
and w = 1, we

get

(4.97) w(µ− ρn) + ρc = (r − 1, 0) ,

a weight of length strictly smaller than γ. In either case, we conclude there is no
ω-regular unitary representation with lowest K-type (r, 0).

The calculation for the remaining K-types in Σ is similar; we leave the details
to the diligent reader.
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4.5.3. The Lowest K-Types of Meta-Aq(λ)’s. As for the genuine case, it re-
mains to show that every ω-regular unitary representation with a lowest K-type of
a Meta-Aq(λ) is indeed a Meta-Aq(λ). The proof for K-types in Λ2, Λ3, and Λ4 is
very similar to the corresponding one in the genuine case, so we omit it.

For µ = (0, 0), we need to show that the trivial representation is the only ω-
regular unitary spherical representation of Mp(4). Here, we refer to the results of
[3] or [10].

We are left with the K-types of the form

(4.98) µ = (r, 1) with r ≥ 3.

These are lowest K-types of Meta-Aq(λ) representations Rq(Cλ⊗Jν) (cf. Definition
2.5) with L = L5 = Ũ(1, 0)×Mp(2), λ = r− 3, and Jν a spherical complementary
series of SL(2,R) with infinitesimal character 1

2 ≤ ν ≤ 1. Such a representation
has infinitesimal character

(4.99) (λ, ν) + ρ(u) = (r − 3, ν) + (2, 0) = (r − 1, ν) .

We prove that every ω-regular unitary representation X with lowest K-type µ =
(r, 1) is of the form Rq(Cλ ⊗ Jν), with λ = r − 3 and 1

2 ≤ ν ≤ 1.
The Vogan parameter associated to µ is

(4.100) λa = (r − 1, 0)

as in (4.94) above. Hence X has infinitesimal character

(4.101) γ = (r − 1, ν)

for some positive number ν. The representation X is uniquely determined by the
value of ν, so must be of the form Rq(Cλ⊗Jν), with λ = r−3. It remains to prove
that ν belongs to the appropriate range. Applying PDOI to µ with ρn =

(
3
2 ,−

1
2

)
,

we find that the infinitesimal character γ of X can not be greater than

(4.102) (r − 1, 1) .

Therefore ν ≤ 1. The ω-regularity condition forces ν ≥ 1
2 , so we are done.

Consequently, we have

Proposition 10. If X is an irreducible ω-regular unitary nongenuine repre-
sentation of Mp(4) then X is a Meta-Aq(λ) representation.

5. Nonunitarity of the Mystery Representation XM

In this section we finish the proof of Theorem 2.8 by showing that the two
representations of Mp(4) with lowest K-type

(
1
2 ,−

1
2

)
and infinitesimal character(

3
2 ,

1
2

)
are not unitary (cf. Section 4.3). Since the PDOI is satisfied in this case, we

have to use a different method; i. e., we must construct the intertwining operator
giving rise to the invariant hermitian form and show that the form is indefinite. We
discuss this theory in Section 5.2 in some detail.
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5.1. The Representation XM . We consider the irreducible representations
of Mp(4) with lowest K-type

(
1
2 ,−

1
2

)
and infinitesimal character

(
3
2 ,

1
2

)
, and prove

that they are nonunitary. From now on we identify elements of K with their images
under the map ι (cf. (4.3)).

The K-type
(

1
2 ,−

1
2

)
is fine, so any representation with this lowest K-type is a

constituent of a principal series, i. e., an induced representation of the form

(5.1) IP (δ, ν) = IndG
P (δ ⊗ ν ⊗ 1),

where P = MAN is a minimal parabolic subgroup of G, M and A are as in Section
4.1, δ is a character of M , and ν is the character of A with differential

(
3
2 ,

1
2

)
. Recall

that, by Frobenius reciprocity, the K-type

(5.2) µδ =
(

1
2
,−1

2

)
occurs in the principal series IP (δ, ν) if (and only if) the character δ is a summand
of the restriction of µδ to M . We look at this restriction.
The K-type µδ contains the weights

(5.3)
(

1
2
,−1

2

)
and

(
−1

2
,
1
2

)
;

they correspond to the M -characters

δ1(a) = +i = −δ1(b)(5.4)

δ2(a) = −i = −δ2(b)(5.5)

respectively. The two elements

(5.6) a =
[(
−1 0
0 1

)
, i

]
and b =

[(
1 0
0 −1

)
, i

]
are the generators of M . Then IP (δ, ν) contains µδ if and only if δ equals δ1 or δ2.
We conclude that there are exactly two irreducible representations of Mp(4) with
lowest K-type µδ and infinitesimal character

(
3
2 ,

1
2

)
: they are the irreducible con-

stituents of the principal series IP (δ1, ν) and IP (δ2, ν) containing µδ. We denote
these representations by X(δ1, ν) and X(δ2, ν).

It is not hard to see that X(δ1, ν) and X(δ2, ν) are contragredient of each other
(hence one is unitary if and only if the other one is). We sometimes refer to either
one of these two representations as the “Mystery Representation” XM , and write
δ for either one of the two characters δi.

The purpose of this section is to prove that the Mystery representation is
nonunitary. First we observe that XM is Hermitian (i. e., it is equivalent to its
Hermitian dual and hence carries a nondegenerate G-invariant Hermitian form).
By [17], it is sufficient to prove that there exists an element w of the Weyl group
W (G,A) taking (P, δ, ν) to

(
P̄ , δ,−ν

)
, with P̄ the opposite parabolic. Note that

−ν = −ν because ν is real.
We claim that the long Weyl group element w0 = s2e1s2e2 has the desired proper-
ties. Indeed, w0 takes P to its opposite, ν to its negative, and fixes δ:

(5.7) (w0 · δ)(m) = δ(σ−1
0 mσ0) = δ(m) ∀m ∈M.

Here σ0 denotes a representative for w0 in K:

(5.8) σ0 = σ2e1σ2e2 =
[(

i 0
0 1

)
, e

π
4 i

] [(
1 0
0 i

)
, e

π
4 i

]
=
[(

i 0
0 i

)
, i

]
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(note that σ0 is diagonal, hence it commutes with all elements of M).
The nondegenerate invariant Hermitian form on XM is unique up to a constant.

We will explicitly construct a Hermitian intertwining operator that induces the
form. Proving that XM is nonunitary is then equivalent to showing that this
intertwining operator is indefinite.

5.2. Intertwining Operators and Unitarity of Principal Series. In this
section, we review the theory of intertwining operators for principal series of (double
covers of) real split groups. The results presented at the beginning of the section
are well known in the literature (c.f. [5], [16], [2] and [7]) and are reported here for
completeness. The content of the last part is more innovative. The idea, explained
at the end of the section, of using the operator lµ(w0, ν) to look at several principal
series at the same time, is due to Barbasch and Pantano, and has not appeared in
any published work yet.

5.2.1. (Formal) Intertwining Operators for Principal Series. Let G be a (pos-
sibly trivial) two-fold cover of the split real form of a connected (simple and simply
connected) reductive algebraic group. By allowing the cover to be trivial, we intend
to discuss split linear groups and their nonlinear double cover simultaneously.

Choose a minimal parabolic subgroup P = MAN of G. For every irreducible
representation (δ, V δ) of M and every character ν of A, we write

IP (δ, ν) = IndG
P (δ ⊗ ν ⊗ 1)

for the induced representation of G. This is normalized induction, so IP (δ, ν) is
unitary when δ ⊗ ν ⊗ 1 is. The representation space for IP (δ, ν) is denoted by
HP (δ, ν), and consists of functions

(5.9) f : G→ V δ

whose restriction to K is square integrable, such that

(5.10) f(gman) = e−(ν+ρ) log aδ(m)−1f(g)

for all g ∈ G, andman ∈ P . The action ofG on these functions is by left translation.
For every element w of the Weyl group, there is a formal intertwining operator

(5.11) AP (w, δ, ν) : IP (δ, ν) → IP (wδ,wν) .

Notice that AP (w, δ, ν) satisfies all the intertwining properties, but is defined by
an integral that may not converge for all values of ν. (See [5] for details.)
For all F : G→ V δ in HP (δ, ν), we set:

(5.12) AP (w, δ, ν)f : G→ V wδ, g 7→
∫

N∩(wNw−1)

f (gwn) dn.

To reduce the computation of AP (w, δ, ν) to a finite-dimensional problem, we
restrict the operator to the various K-types appearing in the principal series. For
every (µ,Eµ) ∈ K̂, we obtain an operator

(5.13) ãµ(w, δ, ν) : HomK(µ, IndP (δ, ν)) → HomK(µ, IndP (wδ,wν))

by composition on the range. Note that the restriction of IndP (δ, ν) toK is indepen-
dent of ν and equal to the induced representation IndK

M δ. Similarly, IndP (wδ,wν)
restricts to IndK

M wδ. Then we can interpret ãµ(w, δ, ν) as an operator

(5.14) ãµ(w, δ, ν) : HomK(µ, IndK
M δ) → HomK(µ, IndK

M wδ).
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By Frobenius reciprocity, we obtain an operator

(5.15) aµ(w, δ, ν) : HomM (µ, δ) → HomM (µ,wδ)

for every µ ∈ K̂. An easy computation shows that

(5.16) (aµ(w, δ, ν)T )(v) =
∫

N∩(σNσ−1)

e−(ν+ρ) log a(n)T
(
µ (σk (n))−1

v
)
dn

for all T ∈ HomM (µ, δ) and all v ∈ Eµ. (See [7] for details.) Here σ denotes a
representative for w in K, and k(g)a(g)n(g) denotes the Iwasawa decomposition of
an element g in G = KAN.

We are going to break down the operator aµ(w, δ, ν) so that its computation
becomes manageable. The factorization

(5.17) AP (w1w2, δ, ν) = AP (w1, w2δ, w2ν)AP (w2, δ, ν)

holds for any pair of Weyl group elements satisfying the condition

l(w1w2) = l(w1) + l(w2).

Here l denotes the length function on W . It follows that any formal operator
AP (w, δ, ν) can be decomposed as a product of operators corresponding to sim-
ple root reflections. The operators aµ(w, δ, ν) inherit a similar decomposition. In
particular, if

(5.18) w = sαrsαr−1 · · · sα1

is a minimal decomposition of w as a product of simple reflections, then we can
factor aµ(w, δ, ν) as a product of operators of the form

(5.19) aµ(sαi , δi−1, νi−1) : HomM (µ, δi−1) → HomM (µ, sαiδi−1)

for αi a simple root, δi−1 ∈ M̂ (in the W -orbit of δ) and νi−1 ∈ a∗.
In view of this result, we only need to understand the operator aµ(sα, δ, ν) for

α simple. The computation of aµ(sα, δ, ν) can largely be reduced to a similar com-
putation for the rank-one group MGα, where Gα is the SL(2) or Mp(2) subgroup
of G attached to the root α. (See Section 5.3 for a description of Gα for Mp(4).)

We recall the construction of the group Gα. For every (simple) root α we can
define a Lie algebra homomorphism

(5.20) φα : sl(2,R) → g0

as in (4.3.5) of [16]. The image of φα is a subalgebra of g0 isomorphic to sl(2,R).
The corresponding connected subgroup of G is denoted by Gα.

Exponentiating φα, we obtain a group homomorphism

(5.21) Φα : Mp(2,R) → G

with image Gα. The structure of Gα depends on whether the map Φα factors
through SL(2,R).

If Φα factors through SL(2,R), we say that the root α is “not metaplectic”.
In this case, Gα is isomorphic to SL(2,R), and the maximal compact subgroup
Kα ⊂ Gα is isomorphic to U(1). If Φα does not factor through SL(2,R), then we
call α “metaplectic”. For metaplectic roots, Gα 'Mp(2,R) and Kα ' Ũ(1).
We can give a more explicit description of the metaplectic roots: if G is not of type
G2, then the metaplectic roots are exactly the long roots. If G is of type G2, then
all roots are metaplectic.
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Let us go back to the task of computing the operator aµ(sα, δ, ν). Recall that

aµ(sα, δ, ν)T (v) =
∫

N̄∩(σαNσ−1
α )

e−(ν+ρ) log a(n̄)T
(
µ (σαk(n̄))−1

v
)
dn̄

for all T ∈ HomM (µ, δ) and all v ∈ Eµ. Let Gα = KαAαNα be the Iwasawa
decomposition of Gα. Note that:

• N̄ ∩ (σαNσ
−1
α ) = N̄α

• The Iwasawa decompositions of n̄ ∈ N̄α inside G and Gα coincide, because

Kα = K ∩Gα Aα = A ∩Gα Nα = N ∩Gα.

• If α is simple, the restriction of ρ = 1
2

[ ∑
α∈∆+

α

]
to Lie(Aα) equals ρα.

Then we can write

(5.22) aµ(sα, δ, ν)T (v)
∫

N̄α

e−(ν+ρα) log aα(n̄)T
(
µ (σαk

α(n̄))−1
v
)
dn̄

for all T ∈ HomM (µ, δ) and v ∈ Eµ. This formula coincides with the one for the
corresponding operator for the group MGα on the representation µ|MKα .

It follows that any decomposition of µ into MKα-invariant subspaces must be
preserved by the operator aµ(sα, δ, ν).

Let µ =
⊕

l∈Z/2

ϕα
l be the decomposition of µ as a direct sum of isotypic com-

ponents of characters of Kα. The group M stabilizes the subspace (ϕα
l + ϕα

−l), for
every l ∈ N/2. Hence the decomposition

(5.23) µ =
⊕

l∈N/2

(
ϕα

l + ϕα
−l

)
is stable under the action ofMKα. The corresponding decompositions of HomM (µ, δ)
and HomM (µ, sαδ) are stable under the action of aµ(sα, δ, ν). More precisely,

(5.24) aµ(sα, δ, ν) : HomM

(
ϕα

l + ϕα
−l, δ

)
→ HomM

(
ϕα

l + ϕα
−l, sαδ

)
for all l ∈ N/2.

The computation of aµ(sα, δ, ν) on HomM

(
ϕl ⊕ ϕ−l, V

δ
)

can be carried out
explicitly, by evaluating an integral in SL(2,R) or Mp(2). We will not display the
calculation here but just state the result. If

T ∈ HomM (ϕl ⊕ ϕ−l, V
δ),

then aµ(sα, δ, ν) maps T to

(5.25) cl(α, ν)T ◦ µ(σ−1
α ).

The constant cl(α, ν) depends on l and on the inner product 〈ν, α∨〉, and is equal
to:

(5.26) cl(α, ν) :=
πΓ(λ)

2λ−1Γ
(
1 + λ−1+l

2

)
Γ
(
1 + λ−1−l

2

) .
Here λ = 〈ν, α̌〉, and Γ denotes the Gamma function. Note that cl(α, ν) = c−l(α, ν).

To simplify the notation, we introduce a normalization.
Choose a fine K-type µδ containing δ. The space HomM (µδ, δ) is one-dimensional,
hence the operator aµδ

(w, δ, ν) acts on it by a scalar. We normalize the operator
AP (w, δ, ν) so that this scalar is one.
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On each K-type µ we obtain a normalized operator a′µ(sα, δ, ν), which acts on
HomM (ϕα

l + ϕα
−l, δ) by

a′µ(sα, δ, ν)T = c′l(α, ν)T ◦ µ(σ−1
α )

where

c′l(α, ν) =
cl(α, ν)
c 1

2
(α, ν)

if l belongs to Z +
1
2
;

c′l(α, ν) =
cl(α, ν)
c1(α, ν)

if l is an odd integer;

c′l(α, ν) =
cl(α, ν)
c0(α, ν)

if l is an even integer.

Using the expression of cl(α, ν) in terms of Γ functions, and the property

Γ(z + n) = z(z + 1)(z + 2) · · · (z + n− 1)Γ(z) ∀n > 0

of the Γ function, we obtain:

• c′− 1
2+2m

(α, ν) = (−1)m ( 1
2−λ)( 5

2−λ)···(2m− 3
2−λ)

( 1
2+λ)( 5

2+λ)···(2m− 3
2+λ)

• c′1
2+2m

(α, ν) = (−1)m ( 3
2−λ)( 7

2−λ)···(2m− 1
2−λ)

( 3
2+λ)( 7

2+λ)···(2m− 1
2+λ)

• c′2m+1(α, ν) = (−1)m (2−λ)(4−λ)···(2m−λ)
(2+λ)(4+λ)···(2m+λ)

• c′2m(α, ν) = (−1)m (1−λ)(3−λ)···(2m−1−λ)
(1+λ)(3+λ)···(2m−1+λ)

for all m > 0, and of course c′1
2
(α, ν) = c′1(α, ν) = c′0(α, ν) = 1. As usual,

λ = 〈ν, α̌〉.
¿From now on, all our intertwining operators will be normalized. With abuse

of notation, we will replace a′µ(w, δ, ν) by aµ(w, δ, ν) and c′l(α, ν) by cl(α, ν).
In particular, we will write:

(5.27) cl(α, ν) =



1 if l = 0, 1, or 1
2

−
1
2−λ
1
2+λ

= −
1
2−〈ν,α∨〉
1
2+〈ν,α∨〉 if l = 3

2

− 1−λ
1+λ = − 1−〈ν,α∨〉

1+〈ν,α∨〉 if l = 2.

The action of the operator

aµ(sα, δ, ν) : HomM (µ, δ) → HomM (µ, sαδ)

is now completely understood. To conclude the subsection, we specify the parity
of the indices l appearing in the decomposition

HomM (µ, δ) =
⊕

l∈N/2

HomM (ϕα
l + ϕα

−l, δ).

The Lie algebra of Kα is generated by the element

Zα := φα

(
0 1
−1 0

)
.
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Because Kα = exp(iRZα), we can identify the space φα
l (defined to be the isotypic

component of the character l of Kα inside µ) with the l-generalized eigenspace
of dµ(iZα). We note that the element mα = exp(iπZα) has order 2 if α is not
metaplectic, and has order 4 otherwise. This condition imposes strong restrictions
on the possible eigenvalues of dµ(iZα).
If α is not metaplectic, then dµ(iZα) has integer eigenvalues for every K-type µ.
If α is metaplectic, then the eigenvalues of dµ(iZα) are integers if the K-type µ is
non-genuine (i.e. if µ(−I) is trivial), and half-integers if µ is genuine. Therefore:

• if µ is genuine and α is metaplectic, then every index l appearing in the
decomposition

HomM (µ, δ) =
⊕

l∈N/2

HomM (ϕα
l + ϕα

−l, δ)

belongs to Z + 1
2 ;

• if µ is not genuine, or if µ is genuine and α is not metaplectic, then every
index l belongs to Z. Precisely, l is an odd integer if δ(mα) = −I and it
is an even integer otherwise.

Finally, we observe that the action of Zα on Eµ extends to an action of Z2
α on

the space HomM (µ, δ), because Z2
α commutes with M . The action is given by:

T 7→ T ◦ (dµ(Zα))2 .

So we can think of

HomM (µ, δ) =
⊕

l∈N/2

HomM (ϕα
l + ϕα

−l, δ)

as the decomposition of HomM (µ, δ) into generalized eigenspaces for Z2
α.

5.2.2. Unitarity of Langlands quotients. We restrict our attention to represen-
tations with real infinitesimal character, so we assume ν to be real.
Suppose that ν is strictly dominant for the positive root system determined by
N . Then the principal series IP (δ, ν) has a unique irreducible Langlands quotient
X̄P (δ, ν). The purpose of this section is to discuss the unitarity of X̄P (δ, ν).

By work of Knapp and Zuckermann, X̄P (δ, ν) is Hermitian if and only if the
long Weyl group element w0 satisfies

w0δ ' δ and w0ν = −ν.
We will assume that the above conditions are met. Then the normalized operator
AP (w0, δ, ν) (introduced in the previous section) is defined by a converging integral.
Let δ(w0) be any intertwining operator displaying w0δ as equivalent to δ. The
composition

(5.28) L(w0, δ, ν) := δ(w0)AP (w0, δ, ν) : IP (δ, ν) → IP (δ,−ν)
is Hermitian, and induces a G-invariant form 〈 , 〉 on HP (δ, ν) by

(5.29) 〈f, g〉 = (L(w0, δ, ν)f, g)L2(K) ∀ f, g ∈ HP (δ, ν).

Here

(5.30) (f, g)L2(K) =
∫
K

f(k)g(k)dk.

The form 〈 , 〉 descends to a nondegenerate G-invariant form on the quotient of
HP (δ, ν) by the kernel of the operator AP (w0, δ, ν), which is isomorphic to X̄P (δ, ν).
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Note that the irreducible Hermitian representation X̄P (δ, ν) admits a unique nonde-
generate invariant form (up to a constant); hence proving that X̄P (δ, ν) is nonuni-
tary amounts to showing that the form 〈 , 〉 is indefinite.

We begin by making a convenient choice of δ(w0). Let (µδ, Eµδ
) be a fine K-

type containing δ. Because µδ contains δ with multiplicity one, we can canonically
identify δ with its unique copy inside µδ. Then V δ is identified with the isotypic
component Eµδ

(δ) of δ in Eµδ
. (Recall that V δ is the representation space for δ.)

We define two actions of M on V δ: one is the restriction of µδ to M (identified with
δ), the other is by w0 ·δ. The operator µδ(w0) maps V δ = Eµδ

(δ) into itself (because
w0 · δ ' δ), and intertwines the two actions. Hence we can choose δ(w0) = µδ(w0).

This gives:

(5.31) L(w0, δ, ν) = µδ(w0)AP (w0, δ, ν).

By Frobenius reciprocity, L(w0, δ, ν) gives rise to an operator

(5.32) lµ(w0, δ, ν) : HomM (µ, δ) → HomM (µ, δ)

for every K-type µ appearing in the principal series. The operator lµ(w0, δ, ν) :=
µδ(w0)aµ(w0, δ, ν) carries all the signature information on the K-type µ, and is zero
if µ does not appear in the quotient X̄(δ, ν).

Next, we give a factorization of lµ(w0, δ, ν) as a product of operators corre-
sponding to simple root reflections. Recall that if

w0 = sαr
sαr−1 . . . sα1

is a minimal decomposition of w0 as a product of simple reflections, then the
operator aµ(w0, δ, ν) factors as

aµ(w0, δ, ν) =
r∏

j=1

aµ(sαj , δj−1, νj−1)

with x0 = 1, δ0 = δ = x0 · δ, ν0 = ν = x0 · ν, and

δj = sαj
sαj−1 . . . sα1︸ ︷︷ ︸

xj

· δ = xj · δ νj = sαjsαj−1 . . . sα1︸ ︷︷ ︸
xj

· ν = xj · ν

for j ≥ 1. So we can write:

lµ(w0, δ, ν) = µδ(w0)aµ(w0, δ, ν) = µδ(w0)

 r∏
j=1

aµ(sαj , δj−1, νj−1)

 =

= µδ(xr)

 r∏
j=1

aµ(sαj , δj−1, νj−1)

µδ(x0)−1 =

=
r∏

j=1

[
µδ(xj)aµ(sαj

, δj−1, νj−1)µδ(xj−1)−1
]

=

=
r∏

j=1

[
µδ(σαj

)aµ(sαj
, ρj−1, νj−1)

]
=

r∏
j=1

lµ(sαj , ρj−1, νj−1)

The operator aµ(sαj , δj−1, νj−1) carries HomM (µ, δj−1) into HomM (µ, δj).
For all k = 1 . . . r, the M -type δk = xkδ is the representation

δk(m)v = δ(σ−1
k mσk)v
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of M on the space V δ = Eµδ
(δ). Here σk is a representative in K for the root

reflection xk. To obtain a more natural realization of the representation δk, we will
replace δk by its unique copy inside µδ.
The fine K-type µδ contains every M -type in the Weyl group orbit of δ with multi-
plicity one. In particular, µδ contains a unique representation ρk isomorphic to δk.
The representation space for ρk is the isotypic component of δk in Eµδ

, denoted by
Eµδ

(δk); the action of M on Eµδ
(δk) is given by (the restriction of) µδ. The map

µδ(xk) carries V δ = Eµδ
(δ) into Eµδ

(xkδ) = Eµδ
(δk), and intertwines the δk-action

of M on V δ with the ρk-action of M on Eµδ
(δk). Applying µδ(xk) to the range, we

obtain an isomorphism

(5.33) µδ(xk) : HomM (µ, δk) → HomM (µ, ρk),

for all k = 1 . . . n. Let us return to our factorization. Recall that

lµ(w0, δ, ν) =
r∏

j=1

[
µδ(xj)aµ(sαj , δj−1, νj−1)µδ(xj−1)−1

]
.

For all j = 1 . . . r, there is a commutative diagram:

HomM (µ, ρj−1)

s - s
HomM (µ, ρj)

HomM (µ, δj−1)s - sHomM (µ, δj)

6

?

µδ(xj)µδ(xj−1)−1

aµ(sαj
, δj−1, νj−1)

µδ(σαj
)aµ(sαj

, ρj−1, νj−1)

hence we can write

(5.34) lµ(w0, δ, ν) =
r∏

j=1

[
µδ(σαj )aµ(sαj , ρj−1, νj−1)

]
=

r∏
j=1

lµ(sαj , ρj−1, νj−1).

For all j = 1 . . . r, we set lµ(sαj
, ρj−1, νj−1) := µδ(σαj

)aµ(sαj
, ρj−1, νj−1), and we

regard lµ(sαj , ρj−1, νj−1) as an operator acting on HomM (Eµ, Eµδ
).

The operators lµ(w0, δk, ν) coming from characters δk in the Weyl group orbit
of δ admit a similar decomposition. Notice that

• We can combine the various operators lµ(w0, δk, ν) to get an operator

(5.35) lµ(w0, ν) : HomM (Eµ, Eµδ
) → HomM (Eµ, Eµδ

) .

• The operator lµ(w0, ν) factors as a product of operators corresponding to
simple reflections:

(5.36) lµ(w0, ν) =
r∏

j=1

lµ(sαj , νj−1).

Each factor can be interpreted as an operator acting on HomM (Eµ, Eµδ
),

and is easy to compute: write

HomM (Eµ, Eµδ
) =

⊕
l∈N/2

E(−l2)



36 ALESSANDRA PANTANO, ANNEGRET PAUL, AND SUSANA A. SALAMANCA-RIBA

for the decomposition of HomM (Eµ, Eµδ
) into generalized eigenspaces for

the action of Z2
αj

(by T 7→ T ◦dµ(Zαj )
2). The factor lµ(sαj , νj−1) acts on

E(−l2) by

T 7→ cl µδ(σαj )Tµ(σ−1
αj

),

where cl = cl(αj , νj−1) are the scalars introduced in the previous section.

The operator lµ(w0, ν) carries all the signature information for the Hermitian
form 〈, 〉 on the µ-isotypic subspace of the principal series representation IP (δk, ν),
for every M -type δk occurring in µδ which is fixed by w0.

We will compute the operator lµ(w0, ν) for a particular K-type µ of Mp(4),
and show that it is not positive semidefinite for one choice of δ. This will prove
that the nondegenerate G-invariant Hermitian form on X(δ, ν) is indefinite, hence
the representation is nonunitary.

5.3. The Groups Gα for Mp(4). Let

(5.37) ∆ = ∆(g, a) = {±e1 ± e2, ±2e1, ±2e2}

be the set of roots of g with respect to a. Recall that for each root α ∈ ∆ we can
define a map

(5.38) φα : sl(2,R) → g0

as in (4.3.5) of [16]. The image is a subalgebra of g0 isomorphic to sl(2,R). Let
Gα be the corresponding connected subgroup of Mp(4). Then Gα is isomorphic to
either SL(2,R) or Mp(2) (since Gα is the identity component of the inverse image
under pr of the corresponding subgroup of Sp(4,R)). The map φα exponentiates
to a map

(5.39) Φα : Mp(2) → G

with image Gα. We define

Zα = φα

(
0 1
−1 0

)
∈ k0(5.40)

σα = exp
(π

2
Zα

)
∈ K and(5.41)

mα = exp (πZα) = σ2
α ∈M.(5.42)

Note that σα is a representative in Mp(4) for the root reflection sα; its projection
is a representative in Sp(4) for sα:

pr(σα) = Φα,L

(
0 1
−1 0

)
,

with Φα,L the corresponding map for the linear groups.
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We now write down the maps φα and the elements Zα, σα and mα for Mp(4).
For α = 2e1,

φ2e1

(
u v
w −u

)
=


u 0 v 0
0 0 0 0
w 0 −u 0
0 0 0 0

(5.43)

Z2e1 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 =
[(

i 0
0 0

)
,
i

2

]
(5.44)

σ2e1 = exp
[(

π
2 i 0
0 0

)
,
π

4
i

]
=
[(

i 0
0 1

)
, e

π
4 i

]
(5.45)

m2e1 =
[(
−1 0
0 1

)
, i

]
= a.(5.46)

For α = 2e2,

φ2e2

(
u v
w −u

)
=


0 0 0 0
0 u 0 v
0 0 0 0
0 w 0 −u

(5.47)

Z2e2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 =
[(

0 0
0 i

)
,
i

2

]
(5.48)

σ2e2 = exp
[(

0 0
0 π

2 i

)
,
π

4
i

]
=
[(

1 0
0 i

)
, e

π
4 i

]
(5.49)

m2e2 =
[(

1 0
0 −1

)
, i

]
= b.(5.50)

For α = e1 − e2,

φe1−e2

(
u v
w −u

)
=


u v 0 0
w −u 0 0
0 0 −u −w
0 0 −v u

(5.51)

Ze1−e2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 =
[(

0 1
−1 0

)
, 0
]

(5.52)

σe1−e2 = exp
[(

0 π
2

−π
2 0

)
, 0
]

=
[(

0 1
−1 0

)
, 1
]

(5.53)

me1−e2 =
[(
−1 0
0 −1

)
, 1
]

= y.(5.54)
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Finally, for α = e1 + e2,

φe1+e2

(
u v
w −u

)
=


u 0 0 v
0 u v 0
0 w −u 0
w 0 0 −u

(5.55)

Ze1+e2 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 =
[(

0 i
i 0

)
, 0
]

(5.56)

σe1+e2 = exp
[(

0 π
2 i

π
2 i 0

)
, 0
]

=
[(

0 i
i 0

)
, 1
]

(5.57)

me1+e2 =
[(
−1 0
0 −1

)
, 1
]

= y.(5.58)

For any root α, there is a surjective map

(5.59) prα : Gα → SL(2,R),

which is either injective or two-to-one, depending on whether Gα is linear or not.
The element mα belongs to the inverse image of m = diag(−1,−1) under this map,
so prα(m2

α) = 1. Note that mα has order two if prα is injective, and has order
four otherwise. Therefore, the order of mα determines whether Gα is isomorphic
to SL(2) or Mp(2). We find:

(5.60) G2e1 ' G2e2 'Mp(2)

and

(5.61) Ge1−e2 ' Ge1+e2 ' SL(2).

We choose

(5.62) ∆+(g, a) = {2e1, 2e2, e1 ± e2}
so that the simple roots are

(5.63) α = e1 − e2 and β = 2e2.

Then

(5.64) w0 = sαsβsαsβ

is a minimal decomposition of the long Weyl group element w0 as a product of
simple reflections.

5.4. The Operator on the K-Type µ =
(
3
2
, 1

2

)
. We will compute the

operator l(w0, ν) for the K-type µ =
(

3
2 ,

1
2

)
. First, we need to understand the

structure of µδ and µ, and their restriction to M .
5.4.1. The K-Type µδ. The K-type µδ has highest weight(

1
2
,−1

2

)
= (1, 0) +

(
−1

2
,−1

2

)
and is isomorphic to C2 ⊗ det−

1
2 . Here C2 denotes the standard representation of

U(2). So an element (g, z) ∈ Ũ (2) acts on a vector v ∈ Eµδ
' C2 by

µδ (g, z) v := z−1 gv.
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We choose the basis {b1, b2} of Eµδ
, with b1 =

[
1
0

]
and b2 =

[
0
1

]
. Then

µδ (a) = µδ

[(
−1 0
0 1

)
, i

]
=
(

i 0
0 −i

)
, and(5.65)

µδ (b) = µδ

[(
1 0
0 −1

)
, i

]
=
(
−i 0
0 i

)
.(5.66)

Because the elements a and b generate M , the subspaces 〈b1〉 and 〈b2〉 are clearly
stable under the action of M . It is easy to see that

〈b1〉 ' δ1 and 〈b2〉 ' δ2.

The matrices of µδ (σα) and µδ (σβ) with respect to the basis {b1, b2} are as
follows.

µδ (σα) = µδ

[(
0 1
−1 0

)
, 1
]

=
(

0 1
−1 0

)
(5.67)

µδ (σβ) = µδ

[(
1 0
0 i

)
, e

πi
4

]
=
(
e−

πi
4 0

0 e
πi
4

)
.(5.68)

5.4.2. The K-type µ. The K-type µ has highest weight(
3
2
,
1
2

)
= (1, 0) +

(
1
2
,
1
2

)
and is isomorphic to C2 ⊗ det

1
2 . So an element (g, z) ∈ Ũ (2) acts on a vector

v ∈ Eµ ' C2 by
µ (g, z) v := z gv.

The differentiated action is

dµ (Z, z) v = (Z + zI) v,

with I the identity matrix.

We choose the basis {f1, f2} of Eµ, with f1 =
[

1
0

]
and f2 =

[
0
1

]
. Then

µ (a) = µ

[(
−1 0
0 1

)
, i

]
=
(
−i 0
0 i

)
, and(5.69)

µ (b) = µ

[(
1 0
0 −1

)
, i

]
=
(

i 0
0 −i

)
.(5.70)

The subspaces 〈f1〉 and 〈f2〉 are M -invariant, and

〈f1〉 ' δ2 and 〈f2〉 ' δ1.

We give the matrices of µ
(
σ−1

α

)
, dµ (Zα), dµ (Zα)2 and µ

(
σ−1

β

)
, dµ (Zβ) and

dµ (Zβ)2 with respect to the basis {f1, f2}.

µ
(
σ−1

α

)
= µ

[(
0 −1
1 0

)
, 1
]

=
(

0 −1
1 0

)
(5.71)

dµ (Zα) = dµ

[(
0 1
−1 0

)
, 0
]

=
(

0 1
−1 0

)
(5.72)

dµ (Zα)2 =
(
−1 0
0 −1

)
(5.73)
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and

µ
(
σ−1

β

)
= µ

[(
1 0
0 −i

)
, e−

πi
4

]
=
(
e−

πi
4 0

0 e−
3πi
4

)
(5.74)

dµ (Zβ) = dµ

[(
0 0
0 i

)
,
i

2

]
=
(

i
2 0
o 3i

2

)
(5.75)

dµ (Zβ)2 =
(
− 1

4 0
0 − 9

4

)
.(5.76)

5.4.3. The Operator lµ(w0, ν) on HomM (Eµ, Eµδ
). We choose the basis

T1(f1) = 0
T1(f2) = b1

T2(f1) = b2
T2(f2) = 0

of the space E := HomM (V µ, V µδ) .
Note that T1 ∈ HomM (V µ, Eµδ

(δ1)), and T2 ∈ HomM (V µ, Eµδ
(δ2)).

We compute the operator

lµ(sγ , λ) : E → E

associated to each simple reflection γ. Recall the recipe:
• Decompose E into eigenspaces for the action of dµ(Zγ)2: E =

⊕
l∈N/2

E(−l2),

with
E(−l2) := {T ∈ E : T ◦ dµ(Zγ)2 = (−l2)T}

• The operator lµ(sγ , λ) acts on an element T ∈ E(−l2) by

lµ(sγ , λ)T = cl(γ, λ)µδ(σγ)Tµ(σγ)−1,

with

(5.77) cl(γ, λ) =


1 if l = 0, 1, or 1

2

−
1
2−〈λ,γ∨〉
1
2+〈λ,γ∨〉 if l = 3

2

− 1−〈λ,γ∨〉
1+〈λ,γ∨〉 if l = 2

(for our purpose we do not need the constants cl for other values of l).
For brevity of notation, we write: µδ(σγ)Tµ(σγ)−1 := ψµ(sγ)T.

We start by computing the operator lµ(sα, λ) (for α = e1 − e2).
Recall that dµ(Z2

α) = −I, so for all T ∈ E and all v ∈ Eµ, we have

T
(
dµ(Zα)2v

)
= −T (v).

Hence E = E−1 and lµ(sα, λ) ≡ ψµ (sα) .
For all v = a1f1 + a2f2 ∈ Eµ, we compute:

ψµ (sα)T1 (v) = µδ(σα)T1

(
µ
(
σ−1

α

)
v
)

=
(

0 1
−1 0

)
T1

((
0 −1
1 0

)(
a1

a2

))
=

=
(

0 1
−1 0

)
T1

(
−a2

a1

)
=
(

0 1
−1 0

)(
a1

0

)
=
(

0
−a1

)
= −T2(v).

Similarly,

ψµ (sα)T2 (v) =
(

0 1
−1 0

)
T2

((
0 −1
1 0

)(
a1

a2

))
=

=
(

0 1
−1 0

)
T2

(
−a2

a1

)
=
(

0 1
−1 0

)(
0
−a2

)
=
(
−a2

0

)
= −T1(v).
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Then

(5.78) lµ (sα, λ) =
(

0 −1
−1 0

)
.

Now we do the corresponding computations for β = 2e2.
For all j = 1, 2 and all v ∈ Eµ, we have:

Tj

(
dµ(Zβ)2v

)
= Tj

((
− 1

4 0
0 − 9

4

)(
a1

a2

))
= Tj

 − 1
4a1

− 9
4a2

 =


− 9

4Tj if j = 1

− 1
4Tj if j = 2

so E ' E
(
− 1

4

)
⊕ E

(
− 9

4

)
, with

E

(
−1

4

)
= 〈T2〉 and E

(
−9

4

)
= 〈T1〉.

It follows that

lµ(sβ , λ)Tj =


c3/2(β, λ)ψµ(sβ)Tj if j = 1

ψµ(sβ)Tj if j = 2.

Recall that c3/2(β, λ) = −
1
2−〈λ,β∨〉
1
2+〈λ,β∨〉 . We now compute ψµ(sβ)Tj , for j = 1, 2.

ψµ (sβ)Tj (v) = µδ(σβ)Tj

(
µ
(
σ−1

β

)
v
)

=
(
e−

πi
4 0

0 e
πi
4

)
Tj

((
e−

πi
4 0

0 e−
3πi
4

)(
a1

a2

))
=
(
e−

πi
4 0

0 e
πi
4

)
Tj

(
e−

πi
4 a1

e−
3πi
4 a2

)
=

{
−Tj(v) if j = 1
+Tj(v) if j = 2.

Hence we get:

lµ(sβ , λ)Tj =


+

1
2−〈λ,β∨〉
1
2+〈λ,β∨〉 Tj if j = 1

Tj if j = 2.
Equivalently,

(5.79) lµ(sβ , λ) =

( 1
2−〈λ,β∨〉
1
2+〈λ,β∨〉 0

0 1

)
.

We are now ready to compute the full intertwining operator:

lµ (w0, ν) = lµ (sα, sβsαsβν) lµ (sβ , sαsβν) lµ (sα, sβν) lµ (sβ , ν) .

Write ν = (ν1, ν2), with ν1 ≥ ν2 ≥ 0. Then equations (5.78) and (5.79) give:

• lµ (sα, sβsαsβν) = lµ (sα, sβν) =
(

0 −1
−1 0

)
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• lµ (sβ , ν) =

( 1
2−〈ν,β∨〉
1
2+〈ν,β∨〉 0

0 1

)
=

( 1
2−ν2
1
2+ν2

0
0 1

)

• lµ (sβ , sαsβν) =

( 1
2−〈sαsβν,β∨〉
1
2+〈sαsβν,β∨〉 0

0 1

)
=

( 1
2−ν1
1
2+ν1

0
0 1

)
and we obtain:

(5.80) lµ (w0, ν) =

 1
2−ν2
1
2+ν2

0

0
1
2−ν1
1
2+ν1

 .

For all i = 1, 2, let X̄(δi, ν) be the irreducible constituent of the principal series
IP (δi, ν) containing the lowest K-type µδ =

(
1
2 ,−

1
2

)
. The operator lµ(w0, ν) carries

the signature information on the K-type µ =
(

3
2 ,

1
2

)
for both X̄(δ1, ν) and X̄(δ2, ν),

and can be interpreted as the direct sum of the operators

lµ(w0, δ1, ν) : HomM (ν, δ1) → HomM (ν, δ1)

and
lµ(w0, δ2, ν) : HomM (ν, δ2) → HomM (ν, δ2).

Recall that lµδ
(w0, δi, ν) = 1 for both i = 1, 2, because of our normalization. We

can sometimes use the operator lµ(w0, ν) to detect the nonunitarity of X̄(δi, ν):

Remark 5.1. If the ith-entry of lµ(w0, ν) is negative, then the nondegenerate
Hermitian form on X̄(δi, ν) is indefinite, and the representation is nonunitary.
If the ith-entry of lµ(w0, ν) is zero, then the K-type µ does not appear in X̄(δi, ν).
If the ith-entry of lµ(w0, ν) is positive, then we cannot draw any conclusion regarding
the unitarity of X̄(δi, ν).

We are interested in the Mystery representation, that has infinitesimal character
ν =

(
3
2 ,

1
2

)
. In this case

lµ (w0, ν) =
(

0 0
0 − 1

2

)
hence the previous remark implies that X (δ2, ν) is nonunitary.

Theorem 5.2. The Mystery representation of Mp(4) is nonunitary.

Consequently, we obtain the following result:

Theorem 5.3. Let X be an irreducible admissible representation of Mp(4).
Then X is unitary and ω-regular if and only if X is either an Aq(Ω) or a Meta-
Aq(λ) representation.

6. Appendix

6.1. Lie Groups and Representations. Consider figures which have con-
tinuous sets of symmetries, such as the circle or the sphere. For any small number

x, the rotation kx =
(

cosx sinx
− sinx cosx

)
moves the points on the circle by an angle

x. We get a one-dimensional set S1 of rotations that leave the circle looking the
same. Similarly, we can draw an imaginary axis of rotation from any point on the
sphere to its center. That gives us two dimensions of choices for the axis of rotation
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plus one dimension for the angle of rotation around the chosen axis; so the rotations
of a sphere form a three-dimensional set S2.

A Lie Group is a continuous group of symmetries. More precisely, it is a C∞

manifold with a smooth group structure. The sets S1 and S2 of rotations of the
circle and the sphere are examples of one- and three-dimensional Lie groups. If V
is an n-dimensional vector space over a field F, then the set Aut (V ) ' GL (n,F) is
a Lie group of dimension n2.

The group S1 acts on a one-dimensional space by scalars: ktu = λ (t)u, where
λ (t) is a complex number. S1 also acts on the plane by multiplication:

kt

(
u
v

)
=
(

cos t sin t
− sin t cos t

)(
u
v

)
=
(
u′

v′

)
, ∀u, v ∈ C

and on functions (e.g. L2 functions) on the unit circle by left translation:

ktf

((
u
v

))
= f

(
k−1

t

(
u
v

))
, ∀u, v ∈ R s.t. u2 + v2 = 1.

The latter is an infinite dimensional vector space.
Representation Theory studies all possible ways in which a Lie group acts on

vector spaces. We call all these possibilities the representations of the group. More
precisely, a representation of a group G is a continuous homomorphism

(6.1) φ : G→ Aut (V )

for some vector space V . In case all group elements act by the identity operator,
we call the representation trivial.

The representations of the rotation group S1 are related to Fourier series: all
the basic (irreducible) representations are one-dimensional, of periodic type. The
action is

φn (kt) v = eintv, ∀ v ∈ C.
Applications to science abound. Examples include areas where we use infinite series
of the form f (t) =

∑
n∈Z ane

int.
A representation of G on V is called irreducible if the vector space V does not

have proper, closed subspaces which are themselves left invariant by the group.
Irreducible representations are the building blocks of bigger representations.

Remark 6.1. Irreducible representations of compact groups are finite dimen-
sional. Irreducible representations of abelian groups are one-dimensional.

Example 6.2. All irreducible representations of the diagonal group

(6.2) A =
{(

a 0
0 a−1

)
: a > 0, a ∈ R

}
are given by

φr

(
a 0
0 a−1

)
v = arv

for r ∈ C.

Definition 6.3. A representation φ : G → Aut (V ) of G on a vector space V
is unitary if V is a Hilbert space and all operators φ (g) are unitary operators on
V (i.e. preserve the inner product on V ).

Example 6.4. Square integrable functions on the circle L2
(
S1
)

form a unitary
representation of the rotation group S1.
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Example 6.5. All irreducible (hence finite dimensional) representations of a
compact group are unitary.

Example 6.6. A representation φr of the diagonal group A is unitary if r is
purely imaginary.

6.2. The group SL(2, R). Consider the group G = SL(2,R) of 2×2 real ma-
trices with determinant one. In order to construct a large family of representations
of SL(2,R), we consider the following subgroups:

M = {±I}(6.3)

A =
{(

a 0
0 a−1

)
: a > 0

}
(6.4)

N =
{(

1 x
0 1

)
: x ∈ R

}
K =

{(
cos t sin t
− sin t cos t

)
: t ∈ R

}
=
{

exp
(

0 t
−t 0

)
: t ∈ R

}
≡ S1

Remark 6.7. The irreducible representations ofM are {δ+, δ− : δ± (−I) = ±1}.
Those of N are also one-dimensional. In our case, N will act trivially, i. e., by fixing
all vectors.

6.2.1. The Lie algebra of SL(2,R). The set

(6.5) g =
{(

a b
c −a

)
: a, b, c ∈ C

}
= sl (2,C)

is a linear vector space, called the complexified Lie algebra of SL (2,R). The real
Lie algebra g0, with real entries, is the tangent space at the identity of the Lie
group SL (2,R). We will use similar notation for other Lie algebras, e.g. k and k0
are the complexified and the real Lie algebra of K.
The space g has a (bilinear) bracket operation [x, y] = xy − yx and basis elements

H = −i
(

0 1
−1 0

)
, X =

1
2

(
1 i
i −1

)
, Y =

1
2

(
1 −i
−i −1

)
.

They satisfy:

[x, x] = 0 [H,X] = 2X
[x, [y, z]] = [[x, y] , z] + [y, [x, z]] [H,Y ] = −2Y

[X,Y ] = H.

Note that if we define gλ = {Z ∈ g : [H,Z] = λZ}, then g = g0 + g2 + g−2.

Definition 6.8. A Lie algebra representation is a homomorphism π : g →
End (W ) for some vector space W , preserving the bracket operations:

π
(
[x, y]g

)
= [π (x) , π (y)]End(W ) = π (x)π (y)− π (y)π (x) ∀x, y ∈ g.

If W is finite dimensional, then π (x) : W →W is a matrix for all x ∈ g.
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6.2.2. Harish-Chandra modules of G = SL(2,R). If φ : G → Aut (V ) is a rep-
resentation of G, we can restrict the action of the group on V to any subgroup.
In particular, we can restrict the representation to the maximal compact group
K = S1, since we know a bit more about its representations. This way we hope to
be able to say something about the representation of G.

A representation φ of G is called admissible if, when restricted the maximal
compact group K, each irreducible representation µ of K occurs with finite mul-
tiplicity. We call the sum of those copies of µ the isotypic component of µ. If φ
is admissible, then we can find a dense subspace W ⊂ V where φ is differentiable.
The action of g on W is defined by

(6.6) π (Z)w =
d

dt
φ (exp tZ) |t=0w

for all Z in g and w in W .
Suppose that (φ, V ) is an admissible representation of G. The restriction of φ to
the compact subgroup K is a Hilbert space direct sum of isotypic components of
irreducible representations of K:

V =
⊕̂

n∈Z : V (n) 6=0

V (n)

(recall that the irreducible representations {φn} of K = S1 are parameterized by
integers). Set

W =
⊕

n∈Z : V (n) 6=0

V (n)

(the algebraic direct sum of the V (n)’s). Then W is a dense subspace of V and φ
is differentiable on W . Hence we have an action π of g on W , as in (6.6).

Remark 6.9. For all w ∈ V (n) ⊂W

π (iH)w =
d

dt
φn

(
exp t

(
0 1
−1 0

))
t=0

w

=
d

dt

(
eint

)
t=0

w = inw.

Hence we can identify V (n) with the eigenspace for H of eigenvalue n.

The representation W is called a (g,K) module, or a Harish-Chandra module,
of G. Let H, X, and Y be as above.

Proposition 11. For any Harish-Chandra module W of G = SL(2,R), the
action of g on W satisfies:

• H · V (n) ⊆ V (n) diagonalizable operator
• X · V (n) ⊆ V (n+ 2) “raising” operator
• Y · V (n) ⊆ V (n− 2) “lowering” operator.

Definition 6.10. Let W be a Harish-Chandra module, and let

n0 := min
n∈Z

{|n| : V (n) 6= 0} .

We say that V (n0) (or V (−n0)) is the lowest K-type in W . It is the lowest irre-
ducible representation of K occurring in W |K .
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It turns out that we can parameterize irreducible (g,K) modules by their lowest
K-types. First assume n0 ≥ 2. If W is irreducible, then either V (−n0) = 0 (and
V (n0) 6= 0) or V (n0) = 0 (and V (−n0) 6= 0). In the first case, W is generated using
X from the representation V (n0) of K:

W ' V (n0) + V (n0 + 2) + V (n0 + 4) + . . .

= D(n0).

Here D(n0) is the discrete series representation with lowest K-type n0.
Similarly, if V (n0) = 0, then we can generate W from V (−n0) using Y :

W ' V (−n0) + V (−n0 − 2) + V (−n0 − 4) + . . .

= D(−n0).

Now consider the case n0 = 0 or 1. Any representation of G with lowest K-type 0
or 1 can be constructed from a representation of a parabolic subgroup P = MAN ,
as follows. Define

IP (δ, ν) =
{
f : G→ Vδ,ν : f ∈ L2(K), f(gman) = δ

(
m−1

)
e−(ν−1) log af(g)

}
where Vδ,ν is the one-dimensional representation δ⊗ν⊗ trivial of P (with δ = δ± ∈
M̂ , ν ∈ C ' Â). The group G acts on IP (δ, ν) by left translation:

(6.7) φ(x)f(g) = f(x−1g)

for all x, g ∈ G and f ∈ IP (δ, ν). The representation IP (δ, ν) is called the induced
representation (or principal series) with parameters δ and ν .

Remark 6.11. The representation IP (δ, ν) is not necessarily irreducible; e. g.,
IP (δ−, 0) is the sum of two irreducible representations, which we call D(±1).
Moreover, every discrete series representation is a submodule of some IP (δ, ν).

The properties of the principal series and the discrete representations of G =
SL(2,R) are described in Table 1.

Table 1

(6.8)

Representation Irreducible Unitary

D (n) , |n| ≥ 1 yes yes

IP (δ±, iv) ' IP (δ±,−iv), v 6= 0, real yes yes

IP (δ−, 0) no yes

IP (δ+, 0) yes yes

IP (δ+, u), 0 < u < 1 yes yes

IP (δε,m), m ∈ Z, ε = (−1)m yes no

IP (δε,m), m ∈ Z, ε = (−1)m+1 no no

IP (δ±, u+ iv), u, v 6= 0 yes no

It turns out that these two constructions can be applied to any real reductive
Lie group to give an exhaustive classification of its admissible representations.
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