COMPLEX ANALYSIS

Qualifying Exam

Wednesday, June 17, 2015 — 1:00 pm -3:30 pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Prove that for each $n \in \mathbb{N}$ every solution of the equation $(1-iz)^n + z^n = 0$ must satisfy $\operatorname{Im}(z) = -\frac{1}{2}$.

Problem 2.

Classify all the singularities and find the associated residues for

$$f(z) = \frac{e^{-\frac{1}{z}}}{(z-1)(z+1)^2}$$

Problem 3.

Expand in a series of powers of w each of the branches of $z\left(w\right)$ defined by the equation $w=2z+z^2$ (for one branch $z\left(0\right)=0$, for the other $z\left(0\right)=-2$).

Problem 4.

Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x \sin \pi x}{x^2 + 2x + 5} dx$$

Problem 5.

Suppose $f:D(0,1)\to D(0,1)$ is a holomorphic mapping and $f(0)=\frac{1}{5}$. Give an upper bound for |f'(0)|, and characterize the functions for which the upper bound is an equality.

Problem 6.

Let the function f(z) be meromorphic in a neigbourhood of the unit disk $\{|z|\leq 1\}$ and suppose it has only one singular point z_0 on the circle |z|=1 which is a simple pole. Show that $\frac{f^{(n)}(0)}{n!}=\frac{A}{z_0^n}\left(1+\phi_n\right)$ where $\lim_{n\to\infty}\phi_n=0$.

Problem 7.

TRUE or FALSE: There exists a bounded harmonic function on the upper half plane $\mathbb H$ that cannot be extended to any larger domain. Explain your answer.

Problem 8.

Suppose f is analytic in an annulus r < |z| < R, and there exists a sequence of polynomials p_n converging to f uniformly on compact subsets of the annulus. Show that f is an analytic function on the disc |z| < R.