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Notation:
C denotes the complex plane; i = y/—1;
D(zy,r) denotes the open disc in C centered at zy and radius r.



1. Let u be a real-valued continuous function on C such that e*(*) is harmonic
in C. Then w is a constant.



2. Prove or disprove there is a holomorphic function f on the unit disk

D(0,1) such that
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for all positive integers n.



3. Let f be an entire holomorphic function in C such that f(z) and f(ix)
are real for € (1,2). Prove there is an entire function g such that

fz)=g(z"), z€C.



4. Let z1,-++, 2, € D(0,R) and

Qz) = (z=2) (2= 2n)

Let f be a holomorphic function on D(0, R). Prove
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is a polynomial of degree n — 1 such that f(z;) = P(z;) for 1 <j <n.



5. For a > 1 Prove the equation ze® * = 1 has a unique solution in |z| <1,
which is also real and positive.



6. Prove
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7. Let F be a family of holomorphic functions f on the unit disc D(0, 1)
such that
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Prove that F is a normal family.



8. Let {f.}32, be a sequence of holomorphic functions on the unit disk
D(0,1) such that

Fz) = f: £al2)

defines a continuous function in D(0, 1) and F(0) > F(z) on D(0,1). Prove
fn are constant for all n =1,2,3, ...



