ALGEBRA QUALIFYING EXAM

September 22, 2014

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

- 1. Give definitions for each of the following:
 - (a) the group S_n ,
 - (b) ring,
 - (c) ring homomorphism,
 - (d) field,
 - (e) PID.
- 2. Let F be a field. Prove that $\langle F, + \rangle$ and $\langle F^{\times}, \cdot \rangle$ are not isomorphic as groups.
- 3. True/False. Answer "True" or "False", and fully justify your answer with a proof or counterexample: If R is a principal ideal domain and P a nonzero prime ideal of R, then P is a maximal ideal of R.
- 4. Prove that no group of order 132 is simple.
- 5. Determine the splitting field over \mathbb{Q} of the polynomial $x^4 + x^2 + 1$, and the degree over \mathbb{Q} of the splitting field.
- 6. Find two 4 × 4 matrices with the same characteristic and minimal polynomials that are not similar. (Fully justify your answer.)
- 7. (a) Let R be an integral domain. Prove that $R[x]^{\times} = R^{\times}$, i.e. the units in R[x] are the constant polynomials whose constant term is a unit in R.
 - (b) Find an example of a ring R and nonconstant polynomials $f(x), g(x) \in R[x]$ such that f(x)g(x) = 1.
- 8. Let p be a prime. Prove that the Galois group for x^p-2 over $\mathbb Q$ is isomorphic to the group of matrices

$$\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array}\right)$$

with $a, b \in \mathbb{F}_p$, $a \neq 0$.

- 9. Determine all real matrices A with characteristic polynomial $x^3(x^2+1)$, up to conjugation.
- 10. Let \mathbb{F}_q denote the finite field with q elements, and let \mathbb{F}_q^* denote the elements of \mathbb{F}_q that have a multiplicative inverse. Suppose p is a prime, and suppose r and N are positive integers. Consider the map $\mathbb{F}_{p^r}^* \to \mathbb{F}_{p^r}^*$ that sends x to x^N . What is the cardinality of its kernel and image? Fully justify.